
Effective M
etho

d
s fo

r So
ftw

a
re a

nd
 System

s Integ
ra

tio
n

Boyd L. Summers

Effective
Methods for
Software and
Systems
Integration

Sum
m

ers

Information Technology / Software Engineering & Systems Development

Before software engineering builds and installations can be implemented into
software and/or systems integrations in military and aerospace programs, a
comprehensive understanding of the software development life cycle is required.
Covering all the development life cycle disciplines, Effective Methods for
Software and Systems Integration explains how to select and apply a life
cycle that promotes effective and efficient software and systems integration.

The book defines time-tested methods for systems engineering, software
design, software engineering informal/formal builds, software engineering
installations, software and systems integration, delivery activities, and product
evaluations. Explaining how to deal with scheduling issues, the text considers
the use of IBM Rational ClearCase and ClearQuest tools for software and
systems integration. It also:

•	 Presents methods for planning, coordination, software loading,
and testing

•	 Addresses scheduling issues and explains how to plan to coordinate
with customers

•	 Covers all development life cycle disciplines

•	 Explains how to select and apply a life cycle that promotes effective
and efficient software and systems integration

The text includes helpful forms—such as an audit checklist, a software/
systems integration plan, and a software checklist PCA. Providing you with
the understanding to achieve continuous improvements in quality throughout
the software life cycle, it will help you deliver projects that are on time and
within budget constraints in developmental military and aerospace programs
as well as the software industry.

ISBN: 978-1-4398-7662-6

9 781439 876626

90000

K13560

www.auerbach-publications.com

www.crcpress.com

K13560 cvr mech.indd 1 5/14/12 12:59 PM

Effective
Methods for

Software and
Systems

Integration

Effective
Methods for

Software and
Systems

Integration

Boyd L. Summers

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20120326

International Standard Book Number-13: 978-1-4398-7663-3 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

List of Figures ..xi
List of Tables ... xiii
Preface ... xv
Acknowledgments ..xvii
About the Author ...xix

Chapter 1 Introduction ... 1

1.1 Software and Systems Integration Methods1
1.2 Program and Project Planning3
1.3 Systems Design ..3
1.4 Software Requirements ..4
1.5 Software Design/Development4
1.6 Software Implementation ..4
1.7 Software Integration ...5
1.8 Software and Systems Integration5
1.9 Software Subcontractor..5
1.10 Software and Systems Integration Delivery5
1.11 Product Evaluation ...6
1.12 Conclusion ...6
Further Reading ...7

Chapter 2 Program and Project Planning .. 9

2.1 Introduction ..9
2.2 Program ...9

2.2.1 Framework Established10
2.3 Project ...10
2.4 Planning ...11
2.5 Senior Management ...12
2.6 Program and Project Planning13
2.7 Planned Schedules ..14
2.8 Development Plan ...15
2.9 Teamwork ..15
2.10 Team Code of Conduct ..16

vi  •  Contents

2.11 Conclusion ...17
Further Reading ...18

Chapter 3 Systems Design ... 19

3.1 Introduction ..19
3.2 Definition of System Design ...19
3.3 System Engineering Plan .. 20
3.4 Software Architecture Evaluation 20
Further Reading ...22

Chapter 4 Software Requirements .. 23

4.1 Introduction ..23
4.2 Definition of Software Requirements23

4.2.1 Analysis ...24
4.2.2 Use Case ..25
4.2.3 Functions ..25
4.2.4 Architecture ...25
4.2.5 Integration ..25
4.2.6 Verification and Validation26

4.3 Requirements Documentation26
4.3.1 Requirements Traceability26
4.3.2 Formal Review Preparation26

4.4 Managing a Requirements Tool27
4.5 Released Software Requirements27
Further Reading .. 28

Chapter 5 Software Design ... 29

5.1 Introduction ..29
5.2 Development Plan ...29
5.3 Software Design Decisions ... 30

5.3.1 Software Requirements Evaluation 30
5.3.2 Software Reuse ...31

5.4 Peer Reviews ..31
5.5 Software Design/Development Suggestions33

5.5.1 Concurrent Software/Design Development ...33
5.5.2 Lean Software Design/Development33
5.5.3 Lean Software Configuration Management 34

Contents  •  vii

5.6 Agile Software Processes .. 34
5.7 Configuration Management ..36
5.8 Software Standards ...37
5.9 Capability Maturity Model Integration38

5.9.1 CMMI Version 1.3 ...39
5.9.2 Lean Six Sigma .. 40

5.10 Software Companies ... 42
5.10.1 Software Design/Development 43

5.11 Conclusion .. 43
Further Reading .. 44

Chapter 6 Software Implementation .. 45

6.1 Introduction ..45
6.2 Configuration Management ..45

6.2.1 Build Requests ... 46
6.3 Configuration Management Tools 46

6.3.1 IBM Rational ClearCase47
6.3.2 IBM Rational ClearQuest49

6.4 Software Media and Data ..51
6.5 Future Trends ..52

6.5.1 Tool Support ...52
6.6 Conclusion ...53
Further Reading ...53

Chapter 7 Software Integration .. 55

7.1 Introduction ..55
7.2 Software Integration Strategy55

7.2.1 Approach to Software Integration.................. 56
7.2.2 Software Integration Testing 56
7.2.3 The Big Picture ...57

7.3 Development Facility ...58
7.3.1 Software Operations ..58
7.3.2 Software Configuration59

7.4 Software Integration Setup ..59
7.4.1 Integration Test ..59
7.4.2 Installation Plans and Procedures 60
7.4.3 Integration and Checkouts 60

viii  •  Contents

7.5 Software Integration Log .. 60
7.6 Software Test Completion ...61
7.7 Integration Verification and Validation61
7.8 Configuration Reviews and Audits62
Further Reading ...62

Chapter 8 Software and Systems Integration 63

8.1 Introduction ..63
8.2 Software and Systems Integration Plan 64
8.3 Software and Systems Integration Facility 64

8.3.1 Facility Operations ..65
8.3.2 Facility Configuration.......................................65

8.4 Integration Setup ..65
8.5 Formal Engineering Build ...65
8.6 Test Team .. 66

8.6.1 Documentation ... 66
8.6.2 Roles and Assignments 66
8.6.3 Integration Test Processes67
8.6.4 Problem Discovery ... 68
8.6.5 Problem Reports ... 68

8.7 Quality Participation in Software and Systems
Integration .. 68
8.7.1 Quality Checklist ...69
8.7.2 Verification and Validation69

8.8 Late Nights, Early Mornings, and Weekends69
8.8.1 Software Quality Support70

8.9 Break the Mold ..71
8.10 The Bottom Line ...71
8.11 Effective Methods for Software and Systems

Integration ...71
8.12 Planning ...72

8.12.1 Monitor Planning Progress73
8.12.2 Comment ..74

8.13 Communication ..74
8.14 Risk Management ...75

8.14.1 Risk- Based Integration76
8.14.2 Risk Integration Standards77

Contents  •  ix

8.15 Requirements ..77
8.15.1 Evidence of Requirements78

8.16 Systems/Software Design ...78
8.17 Integration ...79

8.17.1 Team Coordination ...79
8.17.2 Plans and Procedures 80

8.18 Execution .. 80
8.18.1 Acceptance Test .. 80

8.19 Continuous Integration ...81
8.19.1 Automation ...81

8.20 Configuration Management ..81
8.21 Quality..83

8.21.1 Peer Review Assurance 84
8.21.2 Software and Systems Assurance85
8.21.3 Additional Quality Concepts85
8.21.4 Improving Quality and Productivity85

8.22 Customer Satisfaction ... 86
8.23 Taking the Initiative for Change 86
Further Reading ...87

Chapter 9 Software Subcontractor ... 89

9.1 Introduction ..89
9.2 Program and Project Selection89
9.3 Subcontractor Approach ... 90
9.4 Software Subcontractor Plan ...91

9.4.1 Software Audits ..92
9.4.2 Audit Checklist ..92

Chapter 10 Software and System Delivery ... 93

10.1 Introduction ..93
10.2 Software Media and Data Delivery94

10.2.1 Software Documentation94
10.2.2 Version Control Documentation94
10.2.3 Build and Installation Procedure95
10.2.4 Delivery Package ..95
10.2.5 Final Software and Systems Delivery..............95

x  •  Contents

10.3 First Article Inspection ... 96
10.4 Functional Configuration Audit98
10.5 Physical Configuration Audit98
Further Reading ...101

Chapter 11 Product Evaluation... 103

11.1 Introduction ..103
11.2 Quality Assurance ..103

11.2.1 Software Quality Plan104
11.2.2 Software Engineering Process Group104

11.3 Product Evaluation Schedule105
11.3.1 Senior Managers ..105
11.3.2 Program and Project Managers106
11.3.3 System and Software Team Participation107

11.4 Artifacts ...107
11.5 Audit Findings ..108
11.6 Corrective Actions ..108

11.6.1 Corrective Audit Plan110
11.7 Quality Metrics ...110
11.8 Quality Management System110
11.9 Software Process ...113

11.9.1 Software Process Assessment.........................113
11.9.2 Software Reviews ...113
11.9.3 Software Process Improvement114

11.10 Stress Management Techniques114
11.11 Solving Quality Issues ..115
Further Reading ...115

Appendix A: Acronyms and Glossary ... 117

Appendix B: Software/Systems Integration Plan 125

Appendix C: Software Audit Checklist ... 137

Appendix D: Software Checklist PCA .. 141

xi

List of Figures

Figure 1.1 Start with the right disciplines. ...2

Figure 1.2 Effective methods flow. ...7

Figure 2.1 Planned schedules. ..14

Figure 2.2 Team action cycle. ...16

Figure 2.3 Team development life cycle. ...17

Figure 4.1 Software requirements development.24

Figure 5.1 Peer review method. ..32

Figure 5.2 Cost curves. ... 34

Figure 5.3 Agile management model. ...35

Figure 5.4 Lean CM performance. ..37

Figure 6.1 Unified change management definition. 48

Figure 6.2 ClearCase VOB architecture. ..49

Figure 6.3 Change request process. ...50

Figure 7.1 Software integration strategy. ... 56

Figure 7.2 Spiral concept. ..57

Figure 8.1 Verification documentation flow.. ...67

Figure 8.2 Model for integration testing. ..67

Figure 8.3 Communication lines. ..75

Figure 8.4 Method of configuration management.82

Figure 10.1 Customer needs. ... 96

Figure 11.1 Product evaluation schedule. ...105

Figure 11.2 Quality gates. ...109

xii  •  List of Figures

Figure 11.3 Quality metrics. ...111

Figure 11.4 Compliance to requirements. ..112

Figure 11.5 Process improvements. ...114

Figure B.1 Software team responsibilities. ...132

Figure B.2 Informal and formal tests. ...133

xiii

List of Tables

Table 1.1 Planning and Engineering Task ..3

Table 4.1 High Failure Rate for Released Software................................. 28

Table 5.1 Software Design Tools ... 30

Table 6.1 Configuration Management Tools ..47

Table 6.2 ClearCase—UCM Roles and Responsibilities 48

Table 8.1 Key Measurement Points ..73

Table 8.2 Code Quality ... 84

Table 10.1 Configuration Baseline .. 99

Table 10.2 PCA Entry Checklist ... 100

Table B.1 Roles and Responsibilities .. 128

Table B.2 Test Approach ...131

xv

Preface

I have been motivated for years to write this book, Effective Methods for
Software and Systems Integration, due to integration challenges in military
and aerospace programs and software industries. My previous software
engineering book, Software Engineering Reviews and Audits, provided the
framework and detailed requirements for verifying and performing audits
during software design/development efforts. Performing reviews and
audits that are successful ensures compliance in specified requirements,
software design, testing, released configuration baselines, formal audits,
and customer satisfaction.

The military and aerospace programs and projects that design, build,
and test software work products effectively provide the framework to
receive subcontractor and customer contracts. Opportunities to work
in the technology field of software design/development provided me the
perspective and understanding of day-to-day software engineering activi-
ties. To have effective software and systems integration methods in place
provides an understanding of the importance of planning, coordination,
software design, configuration management, integration, testing, subcon-
tractors, and quality.

It is critical that integration schedules are addressed and coordinated
daily with affected software teams and organizations before delivery
inside software and systems integration environments. The software
design/development life cycles must be completed and configured before
baselines are released for test, integration, and functional checkouts.

Effective Methods for Software and Systems Integration delivers quality
work products on schedule to customers.

SUMMARY

It is critical to understand and implement the disciplines during the soft-
ware design/development life cycle prior to deliveries of software baselines
inside software and systems integration environments. Chapters in this
book define methods for dealing with project planning, systems design,

xvi  •  Preface

software requirements, software design, software implementation, soft-
ware integration, software and systems integration, subcontractors, deliv-
ery, and product evaluations to produce quality work products. Effective
Methods for Software and System Integration will benefit current and
future military and aerospace programs and projects.

xvii

Acknowledgments

I want to thank my lovely wife, Jana, for her support while writing this book.

My current and past software managers, software and system operations
managers, and the software teams are an inspiration. They have given me
the opportunity to be a contributor and a team player inside software and
systems integration environments.

xix

About the Author

Boyd L. Summers is currently working as a
software engineer for the Boeing Company in
Seattle, Washington. With 30 years of experi-
ence in software engineering and as a leader
of multiple software development teams, Boyd
continues to solve complex technical chal-
lenges to ensure that system and software
engineering problems are addressed, resolved,
and compliant.

Boyd is also the author of the software tech-
nology book, Software Engineering Reviews
and Audits.

For questions about current and future software technology solutions,
e-mail bl.summers.llc@gmail.com.

1

1
Introduction

The primary purpose for the implementation of Effective Methods for
Software and Systems Integration does increase communication, knowl-
edge, visibility into the software life cycle, and the importance of integra-
tion operations. Readers will find this book informative and interesting
and will convey the methods for software and systems integration to be
more effective in developmental military and aerospace programs and
project development. The software industry/companies could benefit as
well by adopting these effective methods. Enjoy the book.

1.1   SOFTWARE AND SYSTEMS INTEGRATION METHODS

To develop, operate, and maintain software and systems integration capa-
bilities inside work product facilities, there must be a major discipline in
supporting the entire software life cycle (i.e., planning, systems, require-
ments, design, builds, installations, integration, subcontractors, quality,
and delivery) that does need to be completely understood. The critical
understanding and the start of the right disciplines of these methods will
empower and achieve effective, flexible, and quality results in an integra-
tion environment. The right disciplines are identified in Figure 1.1.

Effective: In the software industry/companies, military and aerospace
program and projects do become effective by the implementation of
achievable schedules, sound processes, and working solutions for
software and systems integration.

2  •  Effective Methods for Software and Systems Integration

Methods: Provide effective methods to ensure processes and tools
improve productivity and prepare for the challenges that have an
impact on integration environments.

Software: Software design, code and unit test, plans, and test proce-
dures integrated with applied systems, tell us that the software devel-
oped is done right. “Peer reviews” are key.

Systems: Accomplish allocation of software design and engineering
practices for systems to be defined and documented as ready for the
combination of software and systems integration.

Integration: This is the compass to combine software, systems, firm-
ware, and hardware to work together as one.

Rock Solid

This slogan is a reminder of the hard times and trials we face and the
experience while software and systems talk to each other and improve
software design and development efforts.

Analysis & Design

Quality

Evaluation

Integration

Installation

Build

Requirements

Delivery

Customers

Product
Teams

Management

FIGURE 1.1
Start with the right disciplines.

Introduction  •  3

1.2   PROGRAM AND PROJECT PLANNING

The purpose of program and project planning is to provide the neces-
sary process steps to scope out planning for systems and software design/
development within integration efforts. This type of planning will ensure
and establish effective plans and results for performing the disciplines for
software design/development, processes, and procedures for the imple-
mentation supporting software and systems integration activities. The
planning and engineering task presented in Table 1.1 explains the disci-
plines and methods pertaining to communication, planning, risk man-
agement, and deployment.

1.3   SYSTEMS DESIGN

The method for systems design is to analyze customer requirements and
develop a software design/development migration plan for defining the
architecture, components, modules, interfaces, and necessary data for
a designed system to satisfy specified requirements. The systems design
method is increasingly important as it provides the disciplines required
and implemented during software design/development life cycles.

TABLE 1.1

Planning and Engineering Task

Software
Engineering Tasks Communication Planning

Risk
Management Deployment

Systems design x
Requirements x
Design x
Configuration control x
Integration x
Delivery x
Subcontractor x
Quality product
evaluations

x

4  •  Effective Methods for Software and Systems Integration

1.4   SOFTWARE REQUIREMENTS

Defined and documented software requirements provide a systematic
approach to development from multiple resources. The results of func-
tional software interfaces, performance, verification, and production
with required plans, documentation, and procedures become the basis
for software design or development. This effective method is applied for
initial development of software requirements and changes to require-
ment baselines.

1.5   SOFTWARE DESIGN/DEVELOPMENT

The software design/development definition is that of a systematic
approach for the creation of software design and its development to reflect
design and software definitions applicable to the work product. The result-
ing method defines details about the work product architecture, behavior,
components, and interfaces. The software requirements are established
between the elements of the design/development. The documented pro-
gram and project plan provide traceability according to software- defined
processes and procedures.

1.6   SOFTWARE IMPLEMENTATION

The importance of software implementation is a requirement for infor-
mal and formal integration testing in a development, integration facilities,
or the software systems integration facility (S/SIF). The software imple-
mentation method for testing provides assurance that engineering builds
function as expected to enable smooth execution for verification and
test activities. An incremental software and test approach adds the func-
tions incrementally in a series of engineering builds. The software design/
development matures through a series of engineering builds. As software
is tested and demonstrated, build plans are modified for subsequent builds
based on lessons learned from previous engineering builds, troubleshoot-
ing, and checkout.

Introduction  •  5

1.7   SOFTWARE INTEGRATION

All software delivered or implemented by software integration or testing is
processed through a configuration and controlled software library system
that maintains the official status accounting for each delivery. The integra-
tion tasks require that software design/development and test processes be in
place to ensure integration is ready for team troubleshooting and checkout.

1.8   SOFTWARE AND SYSTEMS INTEGRATION

The software and systems integration method provides a consistent
approach to effective integration activities. The software units, compo-
nents, and subsystems are assembled in accordance with defined and doc-
umented integration procedures to ensure that the software and systems
elements are assembled properly. The integration levels and the develop-
ment plan (DP) for software determine if constructed elements are ready
and subject to verification or validation activities.

1.9   SOFTWARE SUBCONTRACTOR

The software subcontractor roles and responsibilities describe how a pro-
gram and projects can benefit and rely on outside companies’ resources
to provide required software and hardware products to be under contract
and effective. The subcontractor presentation to the customer must be
understood from the start of the presentation to the end. Questions can
be asked by the customer to ensure that answers meet the needs for reli-
ability and support.

1.10   SOFTWARE AND SYSTEMS INTEGRATION DELIVERY

When it is time for software and systems integration delivery, the deliv-
ery requires integration testing to be performed to provide assurance that

6  •  Effective Methods for Software and Systems Integration

both software and systems are integrated and working together. The inte-
gration practices ensure that units tested are complete and documented
prior to the official delivery for the customer.

1.11   PRODUCT EVALUATION

An effective product evaluation method provides the necessary pro-
cess steps to conduct and perform continuous evaluations of software
work products during the design/development life cycle and integration
activities. Numerous product evaluation tools and checklists are devel-
oped with associated scheduled processes to perform required audits
and evaluations.

1.12   CONCLUSION

Defined software disciplines include an approach or method during the
software life cycle for a program and projects to provide a plan from
start- up to final delivery to the customer. Many methods were discussed
but the number one method is “quality first”; the other methods come in
second and so on as illustrated in Figure 1.2.

Many program and project meetings are called by senior managers; in
attendance are software and hardware engineers. In those types of meet-
ings, the hardware teams will sit on one side of the table, and the software
team will sit on the opposite side. That situation is unique, but that is how
it is at times. The senior managers and program and project managers
attend meetings and discuss with the two teams that the software or sys-
tem is not working correctly when it is time for delivery to integration
facilities. There is finger- pointing, and both teams may blame the opposite
team for the problem.

The senior manager then points to the program and project managers
and says, “Fix this problem.” That is why effective methods for software and
systems integration need to have hardware and software designers work-
ing together to solve issues that could have an impact on integration, qual-
ity, and delivery schedules to the customer.

Introduction  •  7

FURTHER READING

Appleton, B., 2000. Patterns and software essential concepts and terminology. http://www.
cmcrossroads.com/bradapp/docs/patterns- intro.html.

Beck, K., 2002. Test- Driven Development: By Example, 2nd ed. Addison- Wesley, Boston, MA.
Curritt, P.A., M. Dyer, and H.D. Mills, 1986. Certifying the reliability of software. IEEE

Transactions on Software Engineering, SE-12(1), 3–11.
Gibb, T., 1988. Principals of Software Project Management. Addison- Wesley, Boston, MA.
Martin, R., 2000. Engineer’s Design Principals and Design Patterns. CRC Press, Boca Raton, FL.
Phadke, M.S., 1997. Planning efficient software tests. CrossTalk, 10(10), 11–15.

Start-
Up

“Effective Methods Flow”Program and
Project Planning

Systems
Design

Software
Subcontractor

Product
Evaluation

Software
Requirements

Software
Design

Software
Implementation

Software
Integration

Software &
Systems

Integration

Software &
Systems

Integration
Delivery

FIGURE 1.2
Effective methods flow.

9

2
Program and Project Planning

2.1   INTRODUCTION

Program and project planning is important as it describes the necessary plan-
ning for software and system efforts during software design/ development
life cycles. The definitions of systems design, software requirements and
design, configuration control, systems and software integration, subcon-
tractor involvement, deliveries, and product quality evaluations are criti-
cal to effective planning efforts. The initiation of planning starts at the
proposal phase with the customer. The result of defined software design/
development plans, processes, procedures, subcontractor support, and
effective software tools provides estimations for cost and schedules to be
available for teams that are impacted from the start of the proposal phase
to delivery of the work products to the customer.

2.2   PROGRAM

Before a program can require a plan, program objectives are defined and
technical and management disciplines are identified. This information
defines a reasonable estimate or cause for:

• Cost evaluations
• Risk management assessments
• Defined and documented tasks

10  •  Effective Methods for Software and Systems Integration

• Manageable schedules
• Progress reports

The people who work in a software design/development life cycle are
expected to meet and achieve program objectives and understand the high
expectations required of them. These activities begin at the systems design
level of engineering and flows down to other software disciplines.

Program objectives identify goals for the program with consideration of
how these goals are to be accomplished. Effective programs that perform to
defined objectives and within the scope are successful due to implementing:

• Required data
• Tasks or functions
• How the work product performs
• Quantitative mechanisms

When program objectives and the scope are considered, program manag-
ers can select the best approach that would eliminate “roadblocks” imposed
by scheduled delivery deadlines, budget concerns, and people issues.

2.2.1   Framework Established

Software processes provide the framework and effective planning when
it is time for deliveries to software and systems integration facilities and
the customer. Activities related to the framework are required for all
programs. For effective planning, there are multiple tasks, scheduled
milestones, and quality aspects necessary to ensure the framework is
established not only for managers but also for the people who work. The
quality assurance team, which is independent at times, and configuration
management personnel monitor the framework processes.

2.3   PROJECT

The main reason that software projects are planned and controlled is to
eliminate any confusion that could occur. The teams that are expected
to provide work products struggle if projects are not planned, and con-
trol is not even an option. Studies showed that when schedule, cost, and

Program and Project Planning  •  11

quality objectives are not a top priority, the project is not successful.
Although project success rates are improving, the failure rate can be high
when an objective such as quality attributes is not implemented. To avoid
failure, the project manager and a team of systems and software engineers
who build work products must develop an approach for project planning,
oversee activities, and ensure configuration control is in place.

Software projects get in trouble when uncertainty and confusion come
into play. There are times when systems and software designers do not
communicate, so defined requirements are not discussed in relation to the
developed work product. To eliminate this lack of communication, guide-
lines must be established, such as:

• Structure daily meetings
• Share ideas
• Inform project managers of problems occurring
• Listen and try to resolve complaints

Projects can have a “daily standup” meeting. One a day can get to the
critical points or problems and resolve them that day. If there are con-
cerns, discuss issues with a project manager, then you do not waste other
team members’ time. In the past and currently, these meetings have an
impact on hours of work that could be accomplished. My philosophy is
that project managers need to have the confidence that their people can
take care of the daily routines, so the project managers do not need to
attend meetings for hours and hours. Time is lost; then, people are ready
to go home for the day knowing they have time sitting around listening to
people who have no impacts on what they are trying to accomplish that
day. Stop this right now. Let us go to work.

2.4   PLANNING

Communication planning principals define goals and objectives during
the course of program and project planning. The planning aspects require
a set of managers to understand not only their position but also the techni-
cal practices that support systems and software engineering and to define
the course that lies ahead. There are many planning ideas and decisions by
managers that are not accepted by team members due to the complexity

12  •  Effective Methods for Software and Systems Integration

of change. What should you do? Under planning, the program and project
should consider eliminating chaos. The pressure on teams can be enor-
mous, and useful guidance can be provided, such as:

• Providing a scope for the team to know what is ahead
• Involving systems and software teams to help with delivery schedules
• Planning to adjust and accommodate change
• Identifying risks that could have an impact on program and project

planning
• Defining and understanding quality
• Tracking the progress daily and adjusting if needed

2.5   SENIOR MANAGEMENT

At the senior management level, program and project managers are
required to provide effective planning and focus so teams can be effective
during software design/development activities. Failure in planning is not
an option and does jeopardize the success in achieving sound practices
in program and project execution. Communication early in the process is
the key to eliminate risks and the ability to embark on operational deploy-
ments. The required job of a senior manager is to provide the common
framework for program and project planning to address engineering tasks.

Many software managers begin their careers as software designers or
developers. These types of managers serve:

• The company, military, and aerospace program and projects
• Their employees
• Themselves

When a software manager’s team or organization delivers software to a
customer in a timely fashion, this is called execution. There are questions
that involve execution, such as:

• Do you have customer requirements?
• Do you have an approved budget?
• Do you have an approved plan and schedule?
• Are your program and project capable of dealing with change?

Program and Project Planning  •  13

• Do you keep everyone focused?
• Do customers encounter quality issues with delivered work products?
• Do you measure work status on a regular basis?
• Do you find ways to improve?

Communication is important. A good software manager must learn to
communicate in different ways, for example, providing formal presenta-
tions for upper- level management. Face- to- face communication to explain
agreements with other program and project managers provides a road
map and the plans for meeting goals.

E- mails work at times, but having a discussion will open up your team
members to explain good and bad news. Also, communication is a posi-
tive way for team members to understand your expectations.

Program and project schedules that are not understood from the start
will have an impact on resistance. To implement and use unreasonable
schedules will imply that organizations and team members are not work-
ing hard. Customers are best served by creating work products that can be
used over a long period of time.

Software managers must be aggressive and demand the best from design-
ers and developers, but do not abuse them. Manage your teams wisely.

2.6   PROGRAM AND PROJECT PLANNING

The program and project planning method is well defined in the project
planning process area in CMMI® for Development (version 1.3). The pro-
cess area states the following:

The term “project plan” is used throughout this process area to refer to the
overall plan for controlling the project. The project plan can be a stand-
alone document or be distributed across multiple documents. In either
case, a coherent picture of who does what should be included. Likewise,
monitoring and control can be centralized or distributed, as long as at the
project level a coherent picture of project status can be maintained.

The scale of numerous software design/development efforts is huge and
can lead to confusion and coordination with affected teams. Internal orga-
nizations in programs and projects develop schedules and define processes

14  •  Effective Methods for Software and Systems Integration

and tasks. At the senior management level, managers assign responsibility,
authority, and accountability to program and project managers or team
leaders to define the software design/development (i.e., systems and soft-
ware design, configuration management, quality engineering, etc.) to pro-
vide required support.

Planning activities include:

• Software lessons learned from previous programs and projects
• Cost and schedule estimates and staffing plans
• Software and system requirement definitions
• Defined safety and security requirements
• Selection of appropriate software subcontractors
• Engineering documentation and historical data impacts
• Program and project objectives
• Contract understanding of required or necessary requirements

2.7   PLANNED SCHEDULES

The planned schedule defines tasks and processes to be conducted for
implementation of those tasks and processes. The schedules that are
planned affect team capabilities for risk assessment, configuration con-
trol, and quality. There are three critical factors in many software design/
development programs and projects (Figure 2.1). The scope, schedule, and
budget combined affect the quality of work products.

Scope

Schedule

Quality

Budget

FIGURE 2.1
Planned schedules.

Program and Project Planning  •  15

2.8   DEVELOPMENT PLAN

The critical items pertaining to a documented development plan consist
of planned schedules and provide engineering information and direc-
tion for the production of software. It is important to know that the
planning process is consistent with system- level planning. All major
software design/development activities require consistency in accor-
dance with the steps outlined in the use of development planning,
including the following:

• Definition of entry and exit criteria for the software design/
development

• Review and assessment of the work product and task requirements
• Definition or updates of the process for each software activity
• Development or update of the estimating process
• Development of initial cost and schedule estimation and risks
• Preparation of detailed implementation plans

2.9   TEAMWORK

An important element in all software programs and projects is teamwork,
the coordination and communication within teams applied to meet work
expectations. The effective methods for systems and software planning
coordination provide value for a program and projects to far exceed high
expectations. The software design/development energy and consistency
appeal to achieve high- performance goals and aspirations. By having trust
among teams, a cohesiveness is maintained in the work environment, and
planning schedules becomes much easier to coordinate and implement
within the team.

A plan developed is correct or successful when the team delivers a high-
quality work product on time to meet the schedule and works within the
budget. Remember that senior managers must encourage the program
and project managers to work together with their teams to become effec-
tive, respond to customer expectations, and ensure quality.

16  •  Effective Methods for Software and Systems Integration

Managers do not control change but manage change.

As teams inside programs and projects become autonomous, they run
the risk of pulling in different directions. One team that establishes goals
to improve its own processes could subvert the efforts of other teams.
When there is a face- to- face meeting as one group, teams are able to agree
on proposed planning and project schedules and quality goals or expecta-
tions. In meeting as one group, the team will accomplish the following:

• Meet and achieve team objectives
• Resolve conflicts and issues
• Satisfy customer requirements

When struggles with everyday challenges and problems are ignored, a
team may use the required team action cycle shown in Figure 2.2.

2.10   TEAM CODE OF CONDUCT

It is okay for a team to fail but to be right at least 80% of the time. Teams
that have the privilege and are able to provide clear communication and
their own opinions seem to be successful. When one person speaks, listen
and treat that person with respect. Once you help each other, you will:

INVOLVE OTHER

TEAM MEMBERS

Keep Going

Implement
Team Actions

Determine the
Cause of �ose
Problems

Assess
Problems

Target
Recommendations,
Solutions, and Ideas

FIGURE 2.2
Team action cycle.

Program and Project Planning  •  17

• Show trust in every individual
• Be honest with your team
• Have ideas that show value
• Stop whining or crying

When teams are expected to attend meetings, be prepared and ensure
that action items received are understood in connection with expected
goals to be completed. Work together and do not be lazy. Many software
designers get themselves in a mode of wanting to be left alone when cod-
ing. They get in a zone, so be polite, and do not interrupt, and show respect
for other software designers.

The team process includes meetings; promise to honor meeting start
and end times. Finally, bring your sense of humor, be friendly and flex-
ible, and always keep a positive attitude. As a software designer, I know
the frustrations that could have an impact on jobs and careers in software
design/development. Change from an individual to become a team player
as shown in Figure 2.3.

2.11   CONCLUSION

Teams should not assume that being knowledgeable would offend others
or expect other team members to understand what offends you. The team

Determine Goals

Follow-Up Create Possibilities

TEAM ACTION CYCLE

Develop a Plan

Test Outcomes

Commit to Action

FIGURE 2.3
Team development life cycle.

18  •  Effective Methods for Software and Systems Integration

needs to recognize the relationship between the intent and impacts and
stay away from misunderstandings and the scenario of assigning blame.
Effective teams need to learn to manage their own reactivity and to be
curious about what caused the blame. Practice letting members of a team
know how something has an impact on you and rely on others’ experience
and expertise. There is no “I” in team.

FURTHER READING

Carnegie Mellon, November 2010. CMMI® for Development, Version 1.3, Improving Processes
for Developing Better Products and Services. Carnegie Mellon, Pittsburgh, PA.

Cassidy, A., 1998. CRC Press Practical Guide to Information Systems Strategic Planning. CRC
Press, Boca Raton, FL.

Morris, R.A., 2008. The Everything Project Management Book, 2nd ed. Adams Media, Avon,
MA.

Pressman, R.S.A., 2010. Software Engineering, a Practitioner’s Approach. McGraw- Hill, New
York.

Wellins, S.R., D. Schaff, and K.K. Shomo, 1994. Succeeding with Team 101, Tips that Really
Work. Lakewood Books, Minneapolis, MN.

19

3
Systems Design

3.1   INTRODUCTION

The system/subsystem requirements reviewed by program and project
personnel ensure accurate and complete understanding of the restric-
tions of systems design and applied work products. If program or proj-
ect plans include reusable software interfaces; requirements are identified
and evaluated for use. The term reusable software is commonly used in
military and aerospace programs or projects. External software interfaces
are defined as part of derived software requirements. To support systems
design, graphical representations are prepared and take the form of data
flow, collaboration/communications, and component diagrams.

3.2   DEFINITION OF SYSTEM DESIGN

The requirements for a system design definition are reviewed with appli-
cable users to ensure an accurate and complete understanding of the
restrictions of a system or subsystem that affect work products. The exter-
nal software interface is defined at those levels and verified for complete-
ness. The program and project plans at times include reusable software
and identify interface requirements for use. The external interfaces based
on software architecture definitions also are identified as part of derived
software requirements.

20  •  Effective Methods for Software and Systems Integration

3.3   SYSTEM ENGINEERING PLAN

The systems engineering team for programs and projects is responsible
for the development of software requirements and analyzes the system
architecture and design and allocates system requirements. A systems
engineering plan (SEP) can be written to establish system- level technical
reviews that could be conducted for military and aerospace programs and
projects. The major technical reviews and audits affecting software and
systems include:

• Initial requirements (IR)
• Incremental design review (IDR)
• Final design meeting (FDM)
• Test readiness (TR)
• First- article inspection (FAI)
• Functional configuration audit (FCA)
• Physical configuration audit (PCA)

The main purpose of the SEP is to address upgraded processes from a sys-
tems engineering point of view.

This plan is organized into three main sections: systems engineering,
technical program processes, and engineering integration. The systems
engineering team describes an orderly and structured approach to the
overall system design, software design/development, required formal
reviews, and audits. It is important to have such a plan to document and
provide the technical expertise to execute activities throughout a software
design/development life cycle. Using the plan also enables performance to
be more effective and productive and enables technical planners to spend
more time planning, ensuring the customer will have greater assurance
and satisfaction in addressing the technical challenges that lie ahead.

3.4   SOFTWARE ARCHITECTURE EVALUATION

The purpose of software architecture evaluations is to provide a com-
mon approach to developing the work product architecture. This evalu-
ation applies to the implementation of enhancements for change or

Systems Design  •  21

corrections to existing software architectures. This evaluation provides
the feasibility and effectiveness of software architecture definitions to be
applied for software work products.

Conflicts in requirements, architecture, or program and project plans
should be reported to affected product teams for resolution. The objec-
tives of the software architecture are operational scenarios and system or
subsystem requirements. The scope of the software architecture does use
interface requirements to analyze operational designs, software risks, and
plans to determine the objectives of the architecture.

The development of the software architecture is identified during devel-
opment and made available and understood before beginning a software
design/development life cycle. The program and project plans or schedules
are analyzed to determine the impacts on architecture development.

Continual evaluations provide:

• The operational scenarios to be reviewed
• The defined system and subsystem requirements to be analyzed
• The defined system/subsystem interfaces for analysis

Architecture requirements allocate software to gain a complete under-
standing of the requirements and the capabilities of software architec-
tures. The system or subsystem architecture requirements determine
impacts that would include:

• The impacts to quality factors
• The required functional requirements for the determination of the

software architecture

The trade- offs between quality performance and the modifications are
prioritized and identified outside system or subsystem requirements and
reviewed to determine if requirements are to be modified. The evaluation
of the software architecture does show how well the architecture meets
objectives, constraints, and quality attributes.

The results of software design for architecture changes are examined
to determine appropriate design methods to ensure problems are always
addressed. One approach to consider is the quantitative technique for the
assessment of quality attributes for designs, which are dictated by analysis
and considerations and by using your brain.

22  •  Effective Methods for Software and Systems Integration

FURTHER READING

Arlow, J., 2005. ILA Neustadt, UML 2 and the Unified Process Practical Object- Oriented
Analysis and Design. Addison- Wesley, Boston, MA.

AS9100, 1997. Aero Space (AS) Standard Quality Management System Requirements—
Guidelines for the Application—Part 2.

Jameson, K., 1994. Multi- Platform Code Management. ISA Corporation, O’Reilly &
Associates, Philadelphia, PA.

MIL- STD-499B. 1995. System Approach for Systems Engineering of Defense Systems.
Department of the Air Force STSC Volume 1.

Wigers, K.E., 2003. Systems Engineering, 2nd ed., Microsoft Press, Redmond, WA.

23

4
Software Requirements

4.1   INTRODUCTION

Defined software requirements provide programs and projects with a
systematic approach to the development of software requirements pro-
vided by various ideas and solutions. Software requirements establish the
principals for software design and integration test activities for both soft-
ware and systems integration. The generation and execution of software
requirements are created as a stand- alone item or as an item embedded in
higher- level assemblies (i.e., hardware units, workstations, monitor dis-
plays, integrated platforms, etc.).

4.2   DEFINITION OF SOFTWARE REQUIREMENTS

Identifying and defining software requirements begin with reviewing the
functional or performance requirements developed to identify the con-
straints on software The system requirement that is allocated to software
evaluations determines accuracy, completeness, and applicability of the
requirements for work products.

System requirements allocated to software are refined into greater detail
to define derived software requirements. Program and project plans that
include the capability to acquire reusable software; software requirements
are always identified. The tools (i.e., dynamic object- oriented require-
ments system [DOORS], matrix worksheets, etc.) can be used for the

24  •  Effective Methods for Software and Systems Integration

analysis and modeling to gain an understanding of potential architectures
and associated software requirements.

The work product for software requirements development is driven by
execution and the knowledge of what flows from the start of requirements
analysis to verification and validation as shown in Figure 4.1.

4.2.1   Analysis

Requirements analysis includes a step- by- step process to develop require-
ments for software work products to fulfill high- level user requirements,
allocated system requirements, and ideas for system operational concepts.
Analysis reports are produced as run procedures are verified and vali-
dated to support test and evaluations.

Requrements Analysis

Use Case

Functions

Architecture

Integration

Verification and Validation

FIGURE 4.1
Software requirements development.

Software Requirements  •  25

4.2.2   Use Case

A use case is developed to describe a flow of operations for the performance
of systems and software implementation. The software use case defines
the limitations or technical considerations based on target computers, the
execution strategy for a work product, and computer operating systems.
Operational cases include functionality, performance, maintenance, and
support considerations, as well as the work product’s operational environ-
ment, including boundaries and constraints.

4.2.3   Functions

The function and architecture definitions are analyzed to ensure an accu-
rate and complete understanding of what software is expected to perform.
If program and project plans include reusable software, derived require-
ments are identified and evaluated for inclusion. Additional knowledge
of software operational use cases and the software architecture requires
a need to change functionality and associated requirements. This may be
an ongoing activity during the software requirements definition process.

4.2.4   Architecture

The architecture interface definition is identified and defined as part of
derived software requirements. Graphical representations are prepared
and take the form of data flows and software component diagrams.

The functional software design/development life cycle states and modes
are established per system requirements. The timing, sequence, condi-
tions, and probability of executing to define and redefine functional inter-
face requirements apply to system architectures.

4.2.5   Integration

The integration of requirements is the transformation of a functional
architecture into optimal design solutions. Implementation of disciplined
interface management principles is critical for planning resources and to
perform systems build integration activities for the execution of meeting
software engineering requirements.

26  •  Effective Methods for Software and Systems Integration

4.2.6   Verification and Validation

Software requirements are reviewed to ensure verification and validation.
The priority of each requirement is supportive with program and project
resources to determine the extent of verification and validation for each
defined requirement. The verification and validation for each requirement
is identified, and a list of techniques includes analysis, inspections, dem-
onstrations, and tests conducted in software integration facilities.

The most accomplished systems verification and validation of require-
ments is to plan, evaluate, and record software work product compliance with
defined requirements. The risk reduction will assess and ensure software
design/development activities satisfy user needs and provide efficient and
cost- effective integration of validation and the verification of requirements.

4.3   REQUIREMENTS DOCUMENTATION

The requirements documentation includes software requirements and
related information generated, including use cases and derived soft-
ware requirements, which are the source of each requirement. The software
requirements definition is documented according to development plans,
software processes, and product standards.

4.3.1   Requirements Traceability

The requirements traceability data are documented according to devel-
oping planning, defined processes, and software work product instruc-
tions. All software requirements to higher- level requirements or allocated
system requirements enter the information into the traceability system
according to the program and project’s requirements for traceability stan-
dards. Software requirements are traceable from system requirements or
user requirements and clearly lead to a software architectural component.

4.3.2   Formal Review Preparation

Defined and complete software requirements are critical to have in place
before formal review (i.e., functional configuration audit [FCA], physical
configuration audit [PCA]) acceptance. Many situations can be discovered

Software Requirements  •  27

during these formal reviews when requirements are not complete and
analysis of these requirements is still open or still in work. The FCA is
more involved in reviewing requirements that are more related to the
release of software documentation and procedures that trace to hardware
drawings and are configured in work products (i.e., systems, software,
documentation, facilities, etc.).

From my experience, the systems engineering organization or team is
more involved in the FCA, which is required to be completed before PCAs
are kicked off and conducted. The customer is involved in both audits;
once satisfied and the audits are approved, the customer has the deliver-
able work product in possession.

4.4   MANAGING A REQUIREMENTS TOOL

Senior program and project managers should look for software require-
ments tools that meet the following:

• Ability to impose requirements in multiple formats
• Support for traceability and impact analysis
• Support for software baselines and releases
• Alerts to modifications of the requirements database

Military and aerospace programs and projects utilize many software
requirements tools. A most commonly used tool I am familiar with is
DOORS. This type of tool can bring order to chaos; I am not promoting
this tool. Any effective software requirements tool allows the capability to
manage requirements of the same level so software designers can man-
age source code. I mention and discuss other software tools pertaining to
source code and software design/development in Chapter 6.

4.5   RELEASED SOFTWARE REQUIREMENTS

Various released software requirement definition techniques, orga-
nizational capabilities, and process guidance capabilities are designed
to address the areas of software design/develop ment that can affect

28  •  Effective Methods for Software and Systems Integration

requirements definitions. Directly addressing these areas to align business
goals and objectives reduces rework, increases productivity, and ensures
that requirements lead directly to program and project success and effec-
tive software deliveries to customers. Numerous factors contribute to the
high failure rate for released software, but the most significant factor is
related to poor and undefined requirement gathering, analysis, and man-
agement. The high failure rate for released software is defined in Table 4.1.

FURTHER READING

Ambler, S., 1995. Software Development, Using Use Cases. Cambridge University,
Cambridge, UK.

AS9100, 1997. Aero Space (AS) Standard Quality Management System Requirements—
Guidelines for the Application—Part 2.

Gonzales, R., Requirements Engineering, 2004. Sandia National Laboratories, http://www.
incose.org.

Kazman, R., and A. Eden, January 2003. Defining the terms architecture, design, and imple-
mentation, News at SEI, 6(1). Software Engineering Institute, Pittsburgh, PA.

TABLE 4.1

High Failure Rate for Released Software

Percent of code that is not executed

Percent of code that is written but not
executed

Improvement profits when time is for
released software

Potential loss during the software
development life cycle

Total effort expanded due to software rework

Program failures due to poor requirements

Percentage for high failure rate for
released software

0% 10% 20% 30% 40% 50% 60%

60%

30%

30%

40%

40%

10%

20%

29

5
Software Design

5.1   INTRODUCTION

Software design is a consistent approach and method for the develop-
ment of software requirements in defined designs of a work product. The
software architecture definition provides a framework for the creation of
the product design and at times can provide constrictions. The software
design definition implements details about a software product’s architec-
ture, components, and interfaces. Element traceability of the design and
the software requirements is used by software designers. The traceability
data and software design definitions are documented according to pro-
gram and project plans, ideas, processes, and procedures and applicable
internal work instructions.

5.2   DEVELOPMENT PLAN

The development plan (DP) for software is a documented and well- defined
process useful for implementation and applicable standards. The design
model can use a program and project standard, tools, and methods.
Software design teams are responsible for supporting the development
of software requirements and performing design tasks. The tasks for the
development of top- level software design architecture include the identi-
fication of major software functions (components), functional hierarchy
diagrams, and hardware/software interfaces.

30  •  Effective Methods for Software and Systems Integration

5.3   SOFTWARE DESIGN DECISIONS

The establishment of the software architecture definition provides design
concepts and decisions for a work product. The software requirements def-
inition and the software operational concepts identify the capabilities and
characteristics required for the inputs that are analyzed and integrated
to make key design decisions. Many software design tools, as shown in
Table 5.1, benefit the software designer for requirements, code develop-
ment, configuration management (CM), and software documentation.

5.3.1   Software Requirements Evaluation

The reviews and evaluations of software requirements define that soft-
ware operational scenarios ensure problems affecting software design

TABLE 5.1

Software Design Tools

Software Tools Description

Requirements analysis and design
tools

Requirements analysis tools will be used by software
development organizations for requirements
analysis of new software. Organizations, which do
not use the program- wide standard, provide
requirement documents for inclusion in the
program database. Commercial off- the- shelf
(COTS) tools can be used for software design/
development and documentation to be used to
document reused software categories.
Requirements and design documentation retain the
format of the tools.

Code development tools Code development tools for software are proven in
the design/development of the product line or work
product software. The tools, such as code editors
and compilers, are employed.

Configuration management (CM)
tools

CM tools supports distribution of incremental
development processes implemented in software
companies and for military and aerospace program
and projects.

Commercial off- the- shelf (COTS)
documentation tools

COTS tools include standard word- processing and
graphic development tools to provide for the
development and maintenance of documentation
with the delivered software.

Software Design  •  31

are identified, evaluated, and resolved. The software design/development
team performs a risk analysis using prototype software to help support
early requirements evaluations and design feasibility. Information from
these evaluations is fed back into the output of the software requirements
development phase if the requirement is proven to be unusable and not to
be implemented for use.

5.3.2   Software Reuse

The reuse of software components identifies evaluations by software archi-
tecture definitions on how to decide on the incorporation of components
into the software design. Opportunities for software reuse support numer-
ous software product developments in state and international markets.
The reuse criteria are identified in defined software plans to determine if
the program and project reuse library or existing software work products
can be used for near- term software design activities.

5.4   PEER REVIEWS

Software processes require design engineers to conduct and perform peer
reviews to find and correct as many errors as possible before test team
integration or customers find problems during delivery. The peer review
starts with requirements, design models, and uninterrupted code and unit
tests for the software designer. These reviews are applied at various stages
during the software design/development life cycle to create clean software
work products and provide the assurance that issues or errors are discov-
ered and resolved.

If errors are found early in the development life cycle, time is saved,
and the cost is not a concern. Minor software errors that are not fixed or
resolved become major errors later in a program and projects. Software
design engineers always make mistakes in their code development, so
early peer reviews reduce the amount of rework and are not required late
in the program and project.

As stated in CMMI® for Development (version 1.3) (CMMI stands for
Capability Maturity Model Integration), peer reviews are an important
part of verification and a proven mechanism for effective defect removal.
An important corollary is to develop a better understanding of the work

32  •  Effective Methods for Software and Systems Integration

products and the processes that produced them so defects can be pre-
vented and process improvement opportunities identified. Peer reviews
involve a methodical examination of work products by the producers’
peers to identify defects and other changes that are needed.

Examples of peer review methods include the following:

• Inspections
• Structured walk- throughs
• Deliberate refactoring
• Pair programming

The peer review verification methods identify software bugs, errors, and
defects for removal with recommendations to improve code development
as shown in Figure 5.1.

The peer review method is applied to software work products developed
by programs and projects, but it can also be applied to other work prod-
ucts, such as documentation and training, which are typically developed
by other software teams. Preparation for peer reviews includes identifying
affected teams or groups to participate in the peer review of affected soft-
ware work products. The criteria for conducting peer reviews are as follows:

• Schedule the peer review at a convenient time
• Assign reviewers (i.e., teams)
• Prepare or update materials
• Provide peer review checklists
• Introduce training materials
• Select software work products
• Provide entry and exit criteria (i.e., minutes, action items, etc.)

Applied Software Tools

Team Inspection

Peer Review Method

FIGURE 5.1
Peer review method.

Software Design  •  33

To ensure you have a successful peer review, make sure you have selected
the right reviewers to be involved and guidelines are understood from the
start. If peer reviews are conducted and performed correctly, the peer
review was performed and done right.

5.5   SOFTWARE DESIGN/DEVELOPMENT SUGGESTIONS

I suggest we look at two software design/development methods. One
method is concurrent software design/development, which is a technique
to reduce the time to improve productivity through the simultaneous
performance of activities and processing of information. The concurrent
software design/development method refers to tasks that are performed
simultaneously by different teams or groups that support a team approach
to development. The second method is Lean software design/development.
According to this method, it is far more effective to have small working
teams across the boundaries of informational handoffs, reduce paperwork
loads, and maximize strong communication.

5.5.1   Concurrent Software/Design Development

Concurrent software design/development activities require software design-
ers who have enough expertise to anticipate where the defined design is
going. When starting software design/development, only partial require-
ments are known and developed in short iterations to provide feedback for
systems to emerge. The use of the concurrent software design/ development
method does make it possible to delay commitment until the last moment
when failure to make a decision eliminates an important alternative
or decision.

5.5.2   Lean Software Design/Development

The Lean software design/development objective is to move as many
changes as possible from the top curve to the bottom curve as shown in
Figure 5.2.

Lean software design/development delays the freezing of all design deci-
sions as long as possible because it is easier to change a decision that has
not been made. This type of software design/development emphasizes

34  •  Effective Methods for Software and Systems Integration

designing and managing changes throughout the life cycle. Better under-
standing of software engineering and quick delivery to customers benefits
the concepts to improve processes and increases quality according to the
following principals:

• Early software product development
• Elimination of wasted time
• Understanding and working to software requirements
• Meeting customer expectations and deliveries on time
• Achieving and implementing team goals
• Shortened design and test software life cycles

5.5.3   Lean Software Configuration Management

The traditional software configuration management (SCM) practice
involves the identification of systems and software design/development
and providing configuration control. Selected work products and the
descriptions to maintain traceability of those configurations are key points
throughout the software life cycle. The Lean concept is the process to com-
pare common information with Agile software development.

5.6   AGILE SOFTWARE PROCESSES

The implementation of Agile software processes, principles, practices, and
software design/development deliveries of work products to customers

Cost of Change
Changes in
Constraints

Most Changes

Time

FIGURE 5.2
Cost curves.

Software Design  •  35

does provide fewer defects. Application of Agile methodologies supports
numerous initiatives and provides a program and project with a manag-
er’s approach to emphasize short- term program and project planning. The
adaptability to changing requirements as well as close collaboration with
customers and affected teams show accountability. The Agile management
model consistently depicts processes as shown in Figure 5.3.

The Agile model adopts values that are consistently making decisions
that may cause a rejection of a software design. Agile models are more effec-
tive than the traditional (i.e., waterfall, spiral, etc.) models due to perfection
versus good-enough concepts for software design practices. The software
design engineer using Agile concepts has the capability to understand infor-
mation first before jumping into software design/development activities.

The current state of the economy changes each day. We must resolve the
software engineering approach to adapt to Lean processes and meet the
needs of programs and projects. The four key elements for Agile soft-
ware engineering are:

• The team has control of work assignments
• Communication with team members and customers is needed
• Change is good: “Think outside the box”
• Customer satisfaction and expectations are achieved

The Agile process method for team efforts reflects how a team of soft-
ware people work together. An Agile process continually improves pro-
cesses that are not working or are causing major delays in the software
design/development environment. Internal program and project manag-
ers try to keep the team together by allowing decisions, expectations, and
a commitment to show results. When the Agile team working its own pro-
cesses at times does discover problems, the team will stay the course to
solve problems that could have an impact on these processes.

Control

Process ProductRequirements

FIGURE 5.3
Agile management model.

36  •  Effective Methods for Software and Systems Integration

The Agile method is also about continuous incremental delivery of
products such as software and systems to other program and project team
members and the customer. The Agile team explores and evaluates work
product needs and requirements. The planning and analyzing of what
to build and defining acceptance are an advantage of testing software
and coordinating efforts that feed from one team member to another.
Whichever Agile or Lean framework, method, or techniques are used,
they employ such things as:

• Data models
• Rules of engagement
• Guides or maps
• Agile team rules

These items can be helpful as teams explore the designs and builds that
are prepared for software and systems integration tests to be conducted
and performed.

Agile provides team interactions that deal with processes and tools.
Performance through team members boosts accountability for results
and shared responsibilities for team effectiveness. Strategies, processes, and
practices improve effectiveness and reliability. A successful Agile team
stays alert to change and will adjust strategies and practices to match.

5.7   CONFIGURATION MANAGEMENT

When we look at the Agile process, CM methods are not referenced for
any specific routines. These methods are a supporting discipline and not
directly involved in creating executable code. If Agile processes have a
lack of configuration control, then Lean principles are a bust or a big waste
of time and lead to a chaotic activity. You see no progress in software
design/development.

The members who make up the Agile team are focused on processes and
tools that would imply configuration control is not important, but CM
disciplines aim to trim the process and provide more automation in the
tools, bringing back focus to configuration control objectives. The soft-
ware tools common to other team members are adapted to the processes.

Software Design  •  37

CM is a support discipline to the Agile team, but there are times in soft-
ware design/development whether work products are comprehensive to
plan and process documentation. Controlling change is the foundation
to ensure software design/development activities are important when
change is in the picture. Make sure CM methods do not limit change and
become a stumbling block and a nuisance for program and project plans.

By adapting Agile practices in the CM process, teams can have a leaner
concept in programs and projects by:

• Ensuring change is common with configuration control objectives
• Having a clear distinction for changes to requirements
• Embracing that change is possible with appropriate routines for con-

figuration activities
• Providing the development and enhancement of Agile ideas

My experience has been that common changes from Lean CM create
chaos in working toward heavy and out- of- control processes. An example
is defined in Figure 5.4.

5.8   SOFTWARE STANDARDS

It is and will always be a requirement that software design engineers fol-
low required software standards to ensure that development processes are

Degree of

Automation

High

Low

Lean

CM

Automated

CM
Out of

Control CM

Define CM

Degree of

Process

“Ad Hoc”

FIGURE 5.4
Lean CM performance.

38  •  Effective Methods for Software and Systems Integration

in accordance with specific process models (i.e., CMMI). The software
design engineers are required to show defined, managed, and consistent
improvements during life- cycle development. At minimum, software
standards consist of:

• Documented and maintained plans and procedures
• Peer reviews to eliminate defects and prevent future occurrences
• Standard software tools for design, code and unit test, and configu-

ration control

5.9   CAPABILITY MATURITY MODEL INTEGRATION

CMMI provides the best opportunity to address software design or devel-
opment with ongoing support to customers after delivery. The design/
development process could be a complex activity that benefits the accom-
plishment of correct software tasks during the life cycle. Software engi-
neering and processes require an association with each other when it
comes to software engineering. CMMI does provide a systematic, disci-
plined approach to all software engineering tasks in the affected program
and projects. The development of software work products using CMMI
will enhance the knowledge base for software designers.

To implement CMMI processes provide the content for performance
during the software life cycle for change, development, installation, inte-
gration, and maintenance. Complete software design practices provide the
basic concepts (i.e., form, fit, function, interface, integration process, etc.)
and other sound concepts. Some software engineering tasks defined by
CMMI are:

• The identification of internal and external interfaces
• Software design to establish infrastructure abilities during software

design/development
• Development of plans, processes, and procedures
• Reuse of capabilities for software identified for use

With CMMI implemented and used by the program and projects, this
model represents processes in two different scenarios: continuous and
staged. Every organization should work toward the achievement of a third
level: defined. The process standards apply to:

Software Design  •  39

• Requirements development
• Technical solution (see following discussion)
• Product integration
• Verification
• Validation
• Organizational process focus
• Organizational process definition
• Organizational training
• Integrated project management
• Integrated supplier management
• Risk management
• Decision analysis and resolution
• Organizational environment for integration
• Integrated teaming

Software engineering methods have the capability to utilize many tasks
and activities along with described approaches. The method is effective
when how much support is needed. The engineering process area of tech-
nical solution can be the template for software engineering to design,
develop, and implement solutions to requirements supporting software
and systems integration. The processes that are related to this process area
concept receive requirements for managed processes.

Technical solution processes support each other and service products
related to the software life cycle. A technical data package provides the
software design/development team complete understanding for effective
design and development for the next phase of integration activities.

5.9.1   CMMI Version 1.3

In 2009, CMMI version 1.3 was initiated. The release was to provide a new
approach to software companies and military and aerospace programs and
projects to improve performance in appraisals and training. The focus is on:

• High maturity
• More effective processes
• Conducting and performing effective appraisals
• Commonality in all product suites

Major elements implemented allow appraisal teams to become more
effective in reflecting organizational high maturity using a staged approach.

40  •  Effective Methods for Software and Systems Integration

The high- maturity practices were not understood and were unclear, lead-
ing to mixed views by organizations for how objectives are related and lead
to high levels. Modernized practices include improvements in:

• Agile environments
• Functional requirements during software design/development
• Subcontractor agreements pertaining to COTS (commercial off- the-

shelf) and NDI (non-development item) software
• Organizational training

CMMI version 1.3 coverage will add updated information currently
supported by Lean and Six Sigma and customer satisfaction for software
design/development life- cycle tasks.

5.9.2   Lean Six Sigma

Lean and Six Sigma tools and philosophies have helped thousands of
software companies and military and aerospace programs and projects
dramatically improve processes, customer satisfaction, on- time delivery,
and other measurable results. But, do these same tool sets apply to the
processes of software design/development? The answer is “yes” when the
correct tools are applied in the right way and to the right process.

The Six Sigma methodology attempts to reduce process variation, result-
ing in fewer errors and defects. A software defect is defined by customer
requirements, whether formally documented or an expectation that is not
met. A defect may be detected during the software design/development
phase by team members or later when the customer is using the delivered
software. The Six Sigma process does show fewer defects per opportunities
or zero defects in a software work product.

Opportunities for defects abound, including but not limited to macro-
functional requirements allowing the end user to enter wrong data.

To accomplish the goal of zero defects, team members must have highly
structured and robust processes for each step in a software life cycle. In Six
Sigma, the steps are:

• Define
• Measure
• Analyze
• Improve

Software Design  •  41

The control software teams often use a form of these requirements: gath-
ering, design, implementation, verification, and maintenance. The formal
processes program and projects’ scope are customer requirements to have
effective methods for software and systems integration. Data flow analysis
and feature breakdown structures ensure fewer opportunities for errors.
During the software design/development process, the Six Sigma philoso-
phy is applied for building quality through mistake- proofing methods.
The creation of effective charts of when and where defects were detected
and code had to be rewritten, added, or reused can assist the team in eval-
uating which steps in the process have the most variation and are candi-
dates for Six Sigma process improvement.

The Lean production of software and systems integration work prod-
ucts focuses on the elimination of waste from defined processes. The eight
wastes are easily remembered with the acronym DOWNTIME:

• Defects
• Overproduction
• Waiting
• Nonutilized talent
• Transportation
• Inventory
• Motion
• Excess processing

Software design/development is a complex process integrated with
wastes that include defects as discussed and resulting in rework or reuse,
which is another waste for excess processing. Waiting on waste occurs
when programmers, project leaders, and team members require informa-
tion such as customer requirements and parameters from code and unit
tests that could delay their development of software work products. Excess
processing of waste also occurs with numerous review cycles rather than
having a robust process for designing quality and being right the first
time. An example of overproduction and the inventory wastes may be the
creation of features that were not requested or are not needed.

The Lean philosophy of problem solving uses simple and straightfor-
ward tools to achieve fast yet powerful results. Utilizing the software
design/development process creates a process flow or a value stream map

42  •  Effective Methods for Software and Systems Integration

that shows each step. Look for each of the eight wastes as you walk through
the process. Identify the “hidden factory” or tasks that are regularly per-
formed but are not documented or do not add value. If an activity does not
change the functionality of code or the software programming activity,
it is waste. If the activity does require waste, such as some phase quality
gate code reviews, do minimize the wasteful activity by creating a sound
process for performing the task and minimizing rework or reuse.

When you have identified waste in your process flow, drill down to the
root cause using a simple technique. Develop a future state process that
eliminates or minimizes waste. Finally, implement process changes, put-
ting in place standardized work products and program and project leaders
to follow up and ensure improved processes function the intended way.
Make progress so the achievement of program and project milestones is
visible to ensure team members can see progress and are accountable for
meeting their goals. Do not forget to track waste by moving forward so
you can continuously improve processes. A schedule showing the number
of times a section of code has to be rewritten or reused is an example of
how easy it is to identify, track, and eliminate waste.

Combining the data- driven approach of Six Sigma and the waste-
eliminating tools of Lean streamlines the design/development process and
produces better software in less time. The goal is to satisfy your customers
with amazing work products and services. Creating a defect- and waste-
free process during the software life cycle does make excellent programs
and projects and the customer happy.

5.10   SOFTWARE COMPANIES

Many software companies and military and aerospace programs and proj-
ects previously and currently build the concept of specializing in software
design/development to boost competitiveness in the software industry.
Many global companies have always gained ground to integrate the market
with strong software and hardware. Countries have been in competition
in software development for years, nurturing technicians with software
expertise at an early stage.

Software Design  •  43

5.10.1   Software Design/Development

The software design/development opportunities secure databases related
to software technology owned by companies, governmental research facil-
ities, and even universities to provide technology concepts to customers.
The software technology consultant provides customized consulting and
technology to companies, government, and individual and small firms.

The lower limits of software integration restrict the consultant from
participating. The software companies have increased the dollars for win-
ning business and sales. Effective methods for software and systems inte-
gration efforts inject profit from inside the software design/development
sector. Profits will increase once actions for consulting come into play for
software companies all over the world.

5.11   CONCLUSION

The pairs of software design/development attributes shown cannot be
exhibited simultaneously without circulating the brain. One can (and must)
learn to switch, change, and be flexible from one mode to the another as
needs arise. This can be done, and one can learn how to do it.

The attributes of a good software designer/developer are the following:

Visionary

Creative, Imaginative

Objective Critical

Stubborn, Tenacious

Flexible

Cooperative

Independent

Ambidextrous �inker
(Controlled Schizophrenic)

Yearn for the unachievable.

44  •  Effective Methods for Software and Systems Integration

FURTHER READING

Blackburn, J.D., G. Hoedemaker, and L.N. Van Wassenhove, 1996. Concurrent software
engineering: prospects and pitfalls. IEEE Transactions on Engineering Management,
43, 179–188.

Cantor, M., 2001. Software Leadership: A Guide to Successful Software Development.
Addison- Wesley, Boston, MA.

Carnegie Mellon, November 2010. CMMI® for Development, Version 1.3, Improving
Processes for Developing Better Products and Services. Carnegie Mellon, Pittsburgh, PA.

Cedro, T., 2011. Master Black Belt, PMP, MBA Lean Six Sigma Toolbox.
Chaplin, C.R., 1989. Creativity in Engineering Design, United Kingdom Fellowship of

Engineering.
Getting a handle on process, 2010. CrossTalk: Journal of Defense Software Engineering, 23(1).
Humphrey, W., 2006. Sweet Predictability. World of Software Development, 14(2), 14–17.
McNaughton, A., 2004. Software Development. CMP Technical Insight, LLC. Raleigh-

Durham, NC.
Peters, L., 2008. Getting Results from Software Development Teams. Microsoft Press,

Redmond, WA.
Poppendieck, M., 2002. Lean Software Development. Addison- Wesley, Boston, August 2003,

Vol. 11, No. 8.
Schwaber, K., and M. Beedle, 2001. Agile Software Development with SCRUM. Prentice-

Hall, Englewood Cliffs, NJ.
Toro, C., 2011. Lean and Six Sigma Toolbox, Master Blackbelt, PMP, Meridian, ID.

45

6
Software Implementation

6.1   INTRODUCTION

The software implementation method provides assurance that software
engineering builds function as expected in target software and systems
environments and enables smooth execution for verification and valida-
tion activities. Disciplined software implementation principles, planning,
and resources for systems buildup provide effective testing to be conducted
in a development facility for a software/system integration environment.
Software released under configuration management control is described
in a defined documented configuration management plan (CMP) to pro-
vide the necessary requirements for software implementation inside inte-
gration facilities.

6.2   CONFIGURATION MANAGEMENT

The configuration management software team or organization ensures that
configuration management practices are applied consistently throughout
the software life cycle for work products that are developed and maintained
by programs and projects. The team focuses on identifying and manag-
ing changes and maintaining software configuration and documenta-
tion visibility.

The configuration management concept is a cross- functional process
applied over the life cycle of a software work product and provides visibility

46  •  Effective Methods for Software and Systems Integration

and control over functional and physical attributes. The processes that are
used during all phases of software design/development provide the nec-
essary disciplines that identify applicable products, establish and control
baselines, and document and track changes to those baselines. Also, con-
figuration management processes control the storage, access, changes,
archive, and release of the software work products.

This team develops operating procedures that describe implementation
of processes required to satisfy the requirements and direction provided
under associated and documented plans.

6.2.1   Build Requests

When software engineering builds are requested, electronic files or hard
copy paperwork is written to provide build checklists to assemble, compile,
link source code, build archive copies, and provide listings for use in soft-
ware design/development, test, and work product deliveries to customers.

Automatic generation of build deployments ensures customer confi-
dence in the releases. For the program and projects to be successful, pro-
cesses used by build engineers include the capability to package builds and
documentation together. Creating an approach to meet build and installa-
tion processes requires coordination between internal and external teams
to become efficient and available when supporting scheduled tests or con-
figuration checkouts.

The build engineer with the direction or authorization for a requested
engineering build has a defined role to perform tasks related to software
construction and configuration control, including the following:

• Creates build folders to store documentation of software building
• Provides source code changes and control of the source code
• Maintains and controls records during program and project

development

6.3   CONFIGURATION MANAGEMENT TOOLS

The management and use of effective configuration management software
tools provide version control and change management concepts. The tools
(i.e., ClearCase and ClearQuest) may be used to provide the capabilities

Software Implementation  •  47

for adding new files to a software design/development environment and
provide version control to applicable directories and files. File sharing,
parallel software design/development, multiple team support, and soft-
ware reuse are essential for meeting integration test activities demanded
by the schedule. The configuration management software team adminis-
trates or manages software tools. Table 6.1 provides an example and over-
view of tools included in a software and systems integration environment.

6.3.1   IBM Rational ClearCase

The configuration management tool for software design/development that
I have experience with and used in military and aerospace programs and
projects has been IBM Rational ClearCase. This software tool is an object-
oriented database utility provided to establish software product archiving,
automation, identification, version/change control, engineering building,
product releases, status accounting, and auditing activities. The ClearCase
software tool provides an open architecture to implement configuration
management and control solutions. Web site content for computer soft-
ware companies, the military, and aerospace industries employs many dif-
ferent development environments.

TABLE 6.1

Configuration Management Tools

Tool or Vendor
Software Activity

Support Host System Purpose of SCM Tool

ClearCase (IBM) Design, code, and
unit test, software
builds/installation,
integration, and test

UNIX/PC Tools for documentation
and source code, support
multiple developments,
and release baselines

ClearQuest (IBM) Code and unit test,
integration, and
integration testing

PC Software problem
reporting, logs, tracking,
and software debugging
and fixes

FORTE (SUN)
APEX Rational
Clearmake (IBM)

Software engineering
builds

UNIX Compile and build
released software
executable products

Microsoft Office Software engineering
activities

PC Support documentation,
software design/
development, e- mail
communication, and
data analysis

48  •  Effective Methods for Software and Systems Integration

The concept of unified change management (UCM) combines activities
and artifacts as shown in Figure 6.1.

Many programs and projects use different names for ClearCase roles
and assignments, but configuration management can use the following as
an example:

• Architect: Understands and sets up the system architecture
• Configuration manager: Familiar with change and control processes
• Lead: Responsible for schedules and assignments
• Software design engineer: Makes changes to files under configura-

tion control
• Build engineer: Utilizes software build concepts and tools

A functional overview of a ClearCase concept is the repository named
version object base (VOB). This is a data repository where files, directo-
ries, and data are stored. All files and directories are managed inside the
VOB and can expand from hundreds of files and directories to thousands.
Table 6.2 defines the ClearCase—UCM roles, responsibilities, and main

Activities

change schedules task

Artifactsdefect

data

code

FIGURE 6.1
Unified change management definition.

TABLE 6.2

ClearCase—UCM Roles and Responsibilities

Role Main Objectives

Architect Define models (architecture)
Configuration manager Set up configuration management environment (i.e.,

repositories, importing files, etc.)
SCM lead Assign and schedule work activities and define written

software configuration management policies
Software design/developer Make changes to files/directories and deliver software to

build engineers
Build engineer Builds components for established baselines ready for test

Software Implementation  •  49

objectives. The files and directories can be moved or transferred to other
VOBs when the repository becomes too large. They can also be split and
work together. The ClearCase architecture and the VOB database ensure
the checkout of files and support data recovery if needed.

The ClearCase VOB structure example is shown in Figure 6.2.

6.3.2   IBM Rational ClearQuest

The change request management process is critical when reporting any
requests from team members that are needed to change or update software
and systems integration work products. IBM Rational ClearCase comes
into play with another software configuration management (SCM) tool,
IBM Rational ClearQuest.

This software tool provides support for change request management
processes and is a complementary tool for ClearCase. The database utility
is used for recording, tracking, and reporting and provides internal access
control mechanisms for permitting the restriction of work product updates

Main

0

0
0

1 Integration

Delivery
to

Customer

Peer Review
Process

Integration
Area

Sandbox

Development

Software
Change Request

0

Build Engineer Developer

FIGURE 6.2
ClearCase VOB architecture.

50  •  Effective Methods for Software and Systems Integration

at various stages of software design/development, integration and test, and
production processes.

The change request is a request from team members to change an arti-
fact or process. Documented in this type of request is the information
for problems occurring during software design/development and impacts
that could occur. An example of the change request process flow from
initiation to closure is shown in Figure 6.3.

The change request administrator maintains a tracking system to con-
trol software code and software documentation change status. The admin-
istrator manages the database, coordinates, and provides software inputs
to program and project changes to establish traceability to a higher- level
change authority with an impact on software. Software plans and process
procedures provide the information to coordinate the required review
boards to maintain records, including status of change requests, reports,
and documented releases.

This review board is established for software teams to review and dispo-
sition changes that affect controlled software and related documentation.
All software changes are documented, approved, and implemented per
a change request. The review board meetings are scheduled and coordi-
nated by the program or project manager, leader, or designated represen-
tative serving as the review board chairperson.

The review board members include, as a minimum, those from the fol-
lowing areas:

• The affected software teams
• Configuration management
• Test
• System engineering

Initiate
Change
Request (CR)

Analysis Peer Review
Software
Review
Board (SRB)

No Approval

Closure Implement

Approval

FIGURE 6.3
Change request process.

Software Implementation  •  51

• Quality
• Security (if change has an impact on classified or trusted software)
• Change sponsor

The major activities performed by the review board are evaluations and
dispositions of change requests, assignment of priorities, review of action
items, change dispositions from prior meetings, and the evaluation of
deviations that occurred for discussion.

There are many configuration management software tools used in mili-
tary and aerospace programs and projects that can be discussed. The soft-
ware tools selected are required to fit the environment used by the teams
and for software and systems integration activities. Do not take my word
that the Rational ClearCase and ClearQuest are the only usable software
tools. Other tools will work and support the program and projects, so they
will be okay.

6.4   SOFTWARE MEDIA AND DATA

The physical software media (i.e., disk units, CD, DVD, hard drives, etc.)
identification and media labels must also be in accordance with the pro-
gram and project documented media requirements in affected plans.

Marking information could be displayed electronically on the exterior of
the physical media containing the software or provided within the media
through a file in each piece of software data or a written set of electroni-
cally submitted files (identified as .doc, .txt, executable files, etc.). These
media files reside in a computer media library (CML) for engineering use.

Copies of the software media generated are verified and validated by a
quality team.

An example of what could be documented on a media label follows:

Date: Day/month/year format
Title: Document the title of the software being produced

• Derived from: Program and project
• Special handling: Distribution requirements
• Contract number: Document contract number
• Part number: Document software identifier
• Software version: Media version

52  •  Effective Methods for Software and Systems Integration

6.5   FUTURE TRENDS

There are major improvements in software technology and future trends
for effective use of software tools. With the technology, there will be time
to address and resolve issues and improvements required for:

• Software design/development
• Software process definition and enhancements
• Reuse of software program and project artifacts
• Ongoing support of past tool artifacts
• Training for software design engineers
• Software tool disciplines

The software design/development emphasizes SEE (software engineer-
ing environment) technology to allow detailed definitions of the required
roles and responsibilities for users and if organizations related to the pro-
gram and projects are ready. Acquiring software tools should not be a
solution to show tools that are out of control for software design/develop-
ment but ensures processes are defined for the management for software
development activities.

Having effective software tools in place will improve software design/
development and quality produced and increase the productivity for soft-
ware and test engineers. The insertion of SEE technology in the program
and projects is successful when implementation plans are well defined.

The main reason for software tools and how they are adapted to require-
ments should be based on how these tools can approach implementation
of the design/development. In the future, many tools for software design/
development will support the life- cycle work products and the processes
defined by the user. The major obstacle will be the balance and control
for a stable software implementation plan and for adapting to changes
that occur.

6.5.1   Tool Support

When a program or project is ready for software tools that will be effective
during design/development, the key is selecting the right vendor products

Software Implementation  •  53

to match engineering needs. Questions are asked, and the primary steps
for organizational needs are as follows:

• Become effective for designing and developing work products
• Establish the resources for use of software tools
• Conduct software implementation with no problems
• Conduct training

6.6   CONCLUSION

The major building block of software design/development improvement
is to make sure the automation of software tools is understood. Costs are
significant for short- and long- term use. In programs and projects, it is
critical that the organizations enhance software implementation for pro-
ductivity and quality.

FURTHER READING

Gustavsson, A., October 1989. Maintaining the evolution of software objects in an
integrated environment. In Proceedings of the Second International Workshop on
Software Configuration Management, ed. Richard N. Taylor, 117–117. ACM, New
York, doi: http://dx.doi.org/10.1145/72910.73355.

Fayad, M.E. 1996. IEEE Computer Society. Controlling Software Development, MIL-
STD-973, Configuration Management, Reno, NV.

Hanrahan, R. 1994. IEEE STD 109-1994. IEEE Recommended Practice for the Evaluation
and Selection of CASE Tools, STSC Hill Air Force Base, Clearfield, UT.

Herrmann, D.S., 2000. Software Safety and Reliability. Wiley- IEEE Computer Society Press,
New York.

Keyes, J., 2004. Software Configuration Management. CRC Press, Boca Raton, FL.
White, B., 2000. Software Configuration Management Strategies and Rational ClearCase®: A

Practical Introduction. Addison- Wesley, Upper Saddle River, NJ.

55

7
Software Integration

7.1   INTRODUCTION

The methods for software integration provide required steps to be con-
ducted for integration and checkout of informal software engineering
builds. The software design/development team and test engineers need to
develop a strategy for planning, design, execution, data collection, and test
evaluation. The software integration activities are informal and flexible
for software checkout to prepare for the software and systems integration
phase of the work product.

7.2   SOFTWARE INTEGRATION STRATEGY

The strategy for software integration provides a road map that describes
the steps to be conducted as part of the implementation of software to
start integration activities. When a strategy is planned, resources are
required. This strategy should be flexible and promote an approach that
could show change. Planning by senior, program, and project managers
needs to track program and project progress and will require the follow-
ing characteristics:

• Effective technical reviews should be conducted
• Different integration techniques and software approaches are shown
• Software designers are required to be involved from the start to the

finish

56  •  Effective Methods for Software and Systems Integration

The software integration strategy provides an example of higher- level
integrations (Figure 7.1).

7.2.1   Approach to Software Integration

The approach to software integration activities is planned in advance and
is the start for effective software integration. This approach accommodates
lower- level integration to verify software code development that has been
implemented correctly and validate major system functional expectations
by customers.

The approach of effective planning for software integration provides
guidance software design/development and test teams to reach milestone
expectations of senior, program, and project managers. The steps for effec-
tive software integration occur numerous times as deadlines occur, and
measurement problems are resolved early in schedules.

7.2.2   Software Integration Testing

What is software integration testing? The concept for testing software
is to uncover errors, troubleshoot, and fix problems that occur during
a test. Test plans and procedures are developed to test systems and, if
required, rerun integration tests that are to be witnessed by quality asses-
sors or customers.

The software test plans or procedures developed by program and project
managers along with testing experts ensure that testing strategies are not
wasted time during integration. Errors can appear that were previously
undetected. That is the purpose of having plans and procedures in place.

High-Level Testing

Unit Test

Software Teams

Design

Software Integration
Strategy

Software Code

Requirements

Technical Reviews

Software Integration Test

FIGURE 7.1
Software integration strategy.

Software Integration  •  57

Test specifications are also defined and documented to provide testing
steps that test conductors or that experts can implement.

Performing a review of test specifications prior to software integration
testing is a strong attribute assessment before tests are complete. An effec-
tive approach to utilize a test plan or procedure for software leads to the
order and discovery of errors at each stage in the test integration process.

The techniques for developing and construction of the software archi-
tecture goals take unit- tested components and build program structures
established by design. The “bam theory” approach is to attempt nonsched-
uled software integration and testing. This approach is performed in the
following three steps:

• Software test plans, procedures, or internal work instructions are
ready to support integration

• Software integration is ready for testing to be conducted and per-
formed by all notified team members

• Control must be maintained between multiple tests running at the
same time. Lack of control can cause chaos

7.2.3   The Big Picture

Software processes are viewed as a spiral concept (Figure 7.2) for soft-
ware integration to ensure testing is implemented for software design/
development.

System Development

Verification

Validation
Integration

Integration Testing

Code/Design

Requirements

System Engineering

FIGURE 7.2
Spiral concept.

Reda
Highlight

Reda
Highlight

58  •  Effective Methods for Software and Systems Integration

7.3   DEVELOPMENT FACILITY

Early in the software design/development phases for military and aerospace
programs and projects, a Development Facility (DF) is normally established
for software integration activities. This facility is used for the preparation of
software prior to delivery to a software systems integration facility (S/SIF).
Many statements or comments are made about these facilities and whether
they have an effective way to test traffic loads on specific work products. In
discussions with technicians and test teams, I have tried to have in place
effective methods for software systems integration testing in order to show
that we need traffic load tests in these development facilities.

An overview of developer facilities includes geographic locations where
software integration is performed, facilities used, and secure areas along
with other features. Customer- furnished equipment, software, services,
documentation, data, and facilities are required according to contrac-
tual agreements along with a schedule detailing when these needed items
are included. Other required resources include plans for obtaining the
resources, dates needed, and availability of each resource item.

The engineering design/development teams are primarily located in a
designated software development geographic location.

7.3.1   Software Operations

There is adaptation intrinsic to software operations. Examples of this
include parameter- based initialization data and settings selected or
entered by a software designer/developer and test teams during operations
of the software and systems retained for other test integration purposes.

The requirements for a software design/development environment must
be understood when a schedule calls for software development and inte-
gration activities to be performed. Software integration plans ensures that
each element of an environment performs to intended functions in sup-
port of the software design/development activities. The plans also provide
requirements for test environments to perform software testing, including
integration, troubleshooting, and checkout to ensure that each element of
the test environment performs intended functions.

Software applications or tools used for designing, building, or integra-
tion testing the work product could be deliverable. Any nondeliverable
software on which the operation depends can be identified after delivery

Software Integration  •  59

and provisions made to ensure program and project sponsors or stake-
holders obtain the same software and work product.

Software tools used for integration and hardware units installed are
placed under configuration control. When software upgrades or new ver-
sions become available, program and projects evaluate and recommend
whether the updates should be incorporated. Upgrades are installed as
soon as is reasonable for the design/development, and integration activi-
ties are agreed to by all affected organizations. The criteria for evaluating
an upgrade include considering integration problems detected, problems
solved, and impacts on software integration efforts.

7.3.2   Software Configuration

All software configuration identifications documented in accordance
with the program or project software plans are effective ways to ensure
configuration control. The configured baselines identify the develop-
ment life cycle, namely, functional and allocated work product baselines.
Unique software documentation and media define software configura-
tion baselines.

7.4   SOFTWARE INTEGRATION SETUP

The software integration setup method involves planning with program
and project managers to coordinate with the facility operations manager.
Allocated resources such as computers (i.e., workstations) and hardware
units are provided to the software designer/developer and test teams to
conduct informal integration testing. The software engineering builds and
loading into hardware units are performed by selected build engineers.

7.4.1   Integration Test

Inside programs and project integration facilities, system integration tests
are conducted. Verification steps ensure tests provide a check of the capa-
bilities of software and hardware units. The software integration test is to
be repeated numerous times and ensures all integration test problems are
resolved and performance is accomplished early in the defined system and
the system is working to software requirements.

60  •  Effective Methods for Software and Systems Integration

7.4.2   Installation Plans and Procedures

The installation plans and procedures define systems’ specification
requirements. The plan and procedure for the software integration tests
cover the testing of requirements and verification methods conducted in
the DF. Specific integration test plans and procedures consist of checkout
activities to ensure system utilization. The integration testing environ-
ment provides necessary steps to be followed, data collected, and analysis
solutions are used or implemented to produce test reports at the end of
testing activities. The installation test plans and procedures are to be peer
reviewed and approved for release by program and project managers to
prepare for the start of software integration testing.

7.4.3   Integration and Checkouts

Early integration and checkouts focus on software components applied
to tests to uncover errors. Once the components are tested, an informal
system is constructed. Tests are executed to fix software bugs and errors.
The recommendation of processing “draft- only” test plans and procedures
provides loading instructions, execution, and the capabilities for uncover-
ing problems early during integration testing. The software design and
test engineers need to troubleshoot as early as possible before going into a
formal test environment.

7.5   SOFTWARE INTEGRATION LOG

A software integration log provides a view of the day- to- day operations
for the design and test teams using hardware units for integration and
checkout. Facility operations managers use these logs to support opera-
tional setup activities. There are no formal released plans or procedures
required during this informal phase of integration. Quality personnel are
not required to support integration and checkouts performed by the soft-
ware design and test teams. This is an effective method for conducting
informal software testing in preparation for such activities in a facility for
software and systems integration. Allow software design teams the free-
dom to fix and debug problems and work with test teams to ensure plans
and procedures will be ready for release to support formal test phases.

Software Integration  •  61

This software integration log is an effective method for the software
design and test team to troubleshoot problems discovered during this
informal test phase. Once the software is loaded into hardware units, the
software does not have an impact on and take hardware out of configura-
tion. I repeat: Software loaded in hardware units does not and will not have
an impact on and take hardware out of configuration. Hardware quality
and quality software teams butt heads concerning this issue. The quality team
for software provides the correct answer, so please hardware quality follow
its lead. No formal software plans such as step- by- step operational paper-
work or tools in the manufacturing environment are required.

7.6   SOFTWARE TEST COMPLETION

The term acceptance testing is discussed throughout a software integration
program and projects. There are always questions when this topic is men-
tioned or discussed. When will the software integration testing be com-
pleted? There is never an accurate answer, and that frustrates program
and project managers. The burden is always on software engineering.
Remember that the importance of quality is first and not second in any
software program and projects. The pressure is on when integration test-
ing keeps going on and on and not completed in time to deliver the S/SIL
work products to the customer.

The metrics collected or testing models make it possible to develop
guidelines for many answers to the question of when software integra-
tion and testing will be completed. Software integration is the first phase
before any stage of systems integration. Understand that metrics do come
into play in the early stage of software integration and testing. All pro-
gram and project managers need to implement and use metrics instead of
solving problems with no data to support and make key decisions.

7.7   INTEGRATION VERIFICATION AND VALIDATION

One of the important software processes for integration is the element that
is often referred to as verification and validation. The verification aspect is
a set of tasks that ensure correct implementation techniques are in place to

62  •  Effective Methods for Software and Systems Integration

verify that the right work product is being integrated correctly. The valida-
tion concept ensures that the correct work product is the right product to
validate. The quality team roles are to perform:

• Technical reviews
• Configuration management audits
• Progression monitoring during software integration
• Plans, procedures, and documentation reviews
• Qualification and acceptance testing
• Witnessing of implemented plans and procedures during integration

and testing

Quality during software integration throughout the life cycle shows that
proper methods and tools are being utilized. The real motive for quality
can be applied for very large- and small- scale systems.

7.8   CONFIGURATION REVIEWS AND AUDITS

The importance of configuration reviews of software was discussed in my
first book, Software Engineering Reviews and Audits. This step ensures all
elements of software configurations are developed and are in control dur-
ing software integration and test activities. Conducting and performing
effective reviews and audits are key before entering into formal software
and systems integration.

FURTHER READING

Florac, W.A., and A.D. Carleton, 1999. Measuring the Software Process. Addison- Wesley
Professional, Boston, MA.

Jameson, K., 1994. Multi- Platform Code Management. ISA Corporation, O’Reilly Media,
Philadelphia, PA.

MIL- STD-480. 1988 (July). Configuration Control: Engineering Changes, Deviations, and
Waivers.

Pilone, D., and R. Miles, 2008. Head First Software Development. O’Reilly Media, Sebastopol,
CA.

Schwaber, K., and M. Beedle. December 2008. Statistical process control for process
improvement. CrossTalk, Journal of Defense Software Engineering, 50, 833–859.

63

8
Software and Systems Integration

8.1   INTRODUCTION

The effective methods and processes for software and systems integra-
tion require disciplined software design/development practices and test
planning, test execution, configuration control, quality management, and
reporting of work product testing inside integration facilities to manage-
ment and the customer. Software technology books, magazines, and arti-
cles all over the world are intended to reflect “best practices” from various
integration facilities supporting software companies, the military, and
aerospace programs and projects. It is the responsibility of management
to select effective and responsible test conductors and teams and have in
place software and systems integration processes due to the importance
and nature of assigned tests to be successful and provide results. Successful
software and systems integration objectives are accomplished by:

• Agreeing on and identifying blocking issues
• Assigning responsibility for clearing those blocking issues
• Scheduling dates for responsible teams
• Holding periodic meetings until issues and concerns are closed out
• Evaluating current integration facility schedules

Blocking issues can include open or electronic paperwork; unavailable
software test tools; undefined systems under test; and unavailable soft-
ware and test personnel. The critical roadblock is not having a plan to
go forward.

64  •  Effective Methods for Software and Systems Integration

8.2   SOFTWARE AND SYSTEMS INTEGRATION PLAN

The software and systems integration plan (SSIP) defines or references
processes and procedures that are used to integrate defined work products,
systems or subsystems, and hardware units into a software and systems
integration environment. Defined integration processes and procedures
include user definitions for software design/development, execution, test,
evaluation, and reporting of results during integration activities. The SSIP
includes software integration planning and coordination with other for-
mal test activities; risk assessment, product evaluations, configuration
management (CM); and other required support activities. An example
plan is provided in Appendix B.

A software qualification test occurs where work products are integrated
with systems and hardware configuration units associated with other
assigned work products. The software qualification and testing verify
activities and the responsibilities for assigned programs and project teams.
The CMMI® model addresses process integration practices of the CMMI
process framework. Process integration practices include:

• Documenting processes for integration activities
• Verifying and validating in integration environments
• Defining requirements for integration environment readiness crite-

ria within the plan
• Guiding to ensure product integration is maintained throughout the

project life cycle

8.3   SOFTWARE AND SYSTEMS INTEGRATION FACILITY

The software/system integration facility (S/SIF) is the primary facility for
hardware, software integration, and system- level testing. The facility
supports software design and hardware equipment integration used to
integrate and test integrated software with configured systems. The inte-
gration testing in this facility builds incremental delivery of software work
products for checkout and use by customers.

Software and Systems Integration  •  65

8.3.1   Facility Operations

Affected teams build, maintain, and upgrade facility operations for soft-
ware design/development and tests to be conducted. The environment
for software and hardware configurations is established to support early
design and test equipment integration. To ensure systems integration facil-
ity operations are conducted, systems are integrated, and performance is
measured. These activities are conducted for formal verification of system
specification requirements. Detailed integration plans are used with plans
and test procedures to execute integration testing in the facility.

8.3.2   Facility Configuration

The facility is configured to support design and test operations. Detailed
test equipment provides test plans and procedures to be defined for each test
conducted. Drawings are documented to lay out the facility configura-
tion and coordinate with hardware, electrical engineering, and hard-
ware quality.

8.4   INTEGRATION SETUP

The integration setup of software and systems work product components
occurs within the system, emphasizing interfaces and operations between
components, including hardware, software, interfaces, and supporting
functions. The work products are integrated and performed incrementally
using the process of assembling components, testing, and verification and
then assembling more components for setting up the integration activities.

8.5   FORMAL ENGINEERING BUILD

In current states of software design/development and qualification tests,
programs and projects become increasingly complex. Formal software
engineering builds and releasing of software consumes an ever- increasing

66  •  Effective Methods for Software and Systems Integration

amount of time and resources. Software build tools provide a way to auto-
mate entire builds, deployment, and quality assurance and release work
products to the customer.

8.6   TEST TEAM

The test team is responsible for formal qualifications of a specified sys-
tem requirement. The test team works inside the facilities’ operations
with other systems and software personnel. Test teams have always asked
software designers/developers about the issues they see in terms that
the designers/developers can understand. This can lead to bad feelings
between the teams. The test teams and the designers/developers of soft-
ware need to change their attitude toward each other.

8.6.1   Documentation

The documentation software required for the formal qualification phase
defines and documents the progression and interdependency of test arti-
facts. The documentation required is as follows:

• SSIP
• Integration and installation procedures
• Design documentation
• User and operation guides
• Test and analysis reports
• Compliance documentation or sheets
• Hardware drawings

The requirements verification documentation flow is shown in Figure 8.1.

8.6.2   Roles and Assignments

The responsibility for the conduct of a system test and evaluation is the
role assigned to the test conductor and test team organizations. The test
team is responsible for preparation of internal processes, test plans, and
procedures to ensure verifications meet system and software specifica-
tion requirements.

Software and Systems Integration  •  67

8.6.3   Integration Test Processes

The integration test processes are internal activities conducted by test
teams to develop test procedures and ensure acceptance testing has been
completed at the end of formal qualification testing. A model for integra-
tion testing is provided in Figure 8.2.

SSIP Integration and Installation
Procedures Design

Documentation

Compliance
Sheets

FCA/PCA

Test and Analysis
Reports

User and
Operation Guides

Demo

Verification

FIGURE 8.1
Verification documentation flow. FCA, functional configuration audit; PCA, physical
configuration audit.

Develop Test

Develop Procedures

Acceptance Test

I

N

T

E

G

R

A

T

I

O

N

T

E

S

T

I

N

G

FIGURE 8.2
Model for integration testing.

68  •  Effective Methods for Software and Systems Integration

8.6.4   Problem Discovery

The verification method is used when performing an operation to discover
problems and verifying visually; at some point during the test, redlines
are applied to procedures. This involves direct observation while using the
system in its intended modes and states. In general, demonstrations apply
to simple, observable events using pass/fail criteria without test or mea-
surement equipment. Any specification requirement that includes dem-
onstration as a verification method requires verification that equipment/
units are working and operations or functional performance is in place.
The hard copy or electronically released procedures record the pass/fail
status and the marking of a redline when conducting a test and operations.

8.6.5   Problem Reports

The test team approach used to manage and coordinate program and proj-
ect integration testing problems is documented in problem reports as test
problems occur and are discovered. Reviews and monitoring team design
and efforts are entered in electronic databases or documents written on
hard copy. Metrics are gathered on team efforts to monitor progress, risk,
and the resolution of design and test problems during integration test-
ing. Senior, program, and project managers review the metrics to monitor
progress for closure of problems reported during integration testing.

8.7   QUALITY PARTICIPATION IN SOFTWARE 
AND SYSTEMS INTEGRATION

Inside the software and systems integration environment, quality per-
sonnel for both software and hardware are required to support integra-
tion plans and work products produced by software designers/developers
and the test team to ensure software and systems hardware work as one.
The test team runs through test installation procedures with the quality
team to witness the procedures and verify the media to show that sys-
tem software works and that results are documented for completion and
closed. In military and aerospace programs, the quality team verifies, vali-
dates, and approves the media loaded for integration checkout and testing.
There is a common approach that the test team will use; redlines applied

Software and Systems Integration  •  69

to an installation procedure are authorized and incorporated in the proce-
dure for the next formal release procedure to support testing.

8.7.1   Quality Checklist

A basic checklist for integration operations is used by the quality team.
The checklist required by the quality team will ensure that step- by- step
operations are verified and validated and provides a buy- off to work prod-
ucts. The quality checklist will provide:

• Criteria defined from previous audits, plans, procedures, and docu-
mented requirements

• Recorded results, including any noncompliances or observations
• An audit report that provides the scope and purpose of the audit,

completed checklists, trained personnel, results and lessons learned
for future improvements

• Measurement data produced during the audit
• Applicable work products submitted for control in accordance with

the software/system plans

8.7.2   Verification and Validation

The verification and validation process addresses work products in inte-
gration environments and include selected requirements, including sys-
tems hardware and software work product element requirements. It is an
incremental process that is performed throughout the software design/
development life cycle.

The validation process is performed by the quality team to ensure com-
pliance to plans, procedures, and data inside integration facilities. At times,
the software designer/developer, CM, and test teams allow subcontractor
participation in a team development environment to receive, capture, and
report the assessment of the product’s ability to meet the needs of the cus-
tomer and other teams in the user integration environment.

8.8   LATE NIGHTS, EARLY MORNINGS, AND WEEKENDS

Many late nights and early mornings, the software quality team is required
to support software and systems integration activities in the S/SIF. The

70  •  Effective Methods for Software and Systems Integration

team is called in at any time to support integration activities. Without the
quality team supporting the installations, testing, buy- off, and delivery to
other integration lab users or the customer do not occur. Plans for buy-
off require quality team verification and validation and approvals applied
(i.e., CDs, computer units, redlined test procedures, version documenta-
tion, test sheets, etc.).

8.8.1   Software Quality Support

From my experience, if software quality is not available to support software
and systems integration operations, the quality team manager receives a
phone call or e- mail to ask for support. The quality team at times has no
life when it comes to supporting integration activities. Many programs
and projects are under pressure when schedules are impacted and depend
on the quality team morning and night. My frustration with this is dis-
cussed next.

The program and project managers are concerned and worry about
delivering a quality product to meet customer expectations. Is this true?
Schedule comes first, then quality is somewhere down the totem pole. It
is the senior manager’s responsibility to guide program and project teams
to meet commitments of technical performance, cost, and delivery dates.
I know it is tough on senior management to meet all these requirements,
but a schedule should be provided that works with all teams that are
affected. The quality tasks are everywhere inside the program and proj-
ects. These tasks include process/product evaluations, reviews, audits,
planning, formal audits, training, and verification and validation of work
products to be ready for formal test and delivery. I could continue about
the responsibilities required for support. For the senior manager to be
responsible for execution of program and project plans, the term efficiency
is the answer.

When changes are made to planning schedules, include quality teams
in the discussions to ensure events in the schedule allow support. I under-
stand that changes to planning schedules change hourly and daily, but also
ensure resources are available and expected per updated daily schedules
and rescheduled to support the expectations of both senior program and
project managers. Late in a day when the quality team is ready to go home,
calls are made and require support immediately in the integration facili-
ties to ensure delivery to customers. It is frustrating at times, but programs
and projects do expect quality attributes and approvals to be applied.

Software and Systems Integration  •  71

8.9   BREAK THE MOLD

All military and aerospace programs and projects that are in current
operations should learn from the past to improve quality processes and
implement sound practices. In other words, lessons learned from past
operations inside programs and projects should be discussed and reviews
conducted. Teams often state that the current performance is the same
process as other programs and projects they have supported. The senior
manager along with program and project managers should change the old
ways, break the mold, and improve the approach teams should adopt to be
more successful. I know that management personnel are not perfect, but
they should be able to create a working environment for employees/teams
to deliver quality work products to customers consistently and on time.

8.10   THE BOTTOM LINE

At times, it is common knowledge that senior, program, and project man-
agers react to schedule concerns. However, the pressure to have quality
teams support these schedule concerns is overwhelming, and program and
project managers act foolishly. I apologize for the previous statement, but
I have been involved and have witnessed the pressure applied to perform
verification and validation with a short timeline and to be ready to release
work products to software and systems integration facilities and customers.

The need is to emphasize results, not the time spent on meeting deadlines,
tick marks, and schedules. Effective and efficient teams can overcome bad
program and project management and schedules. When strategy meet-
ings are scheduled and there is disagreement with the projected schedules,
teams or individuals will find other programs or projects to support.

8.11   EFFECTIVE METHODS FOR SOFTWARE 
AND SYSTEMS INTEGRATION

The purpose of this book is to provide programs and project- effective
methods for achieving the success of software and systems integration.

72  •  Effective Methods for Software and Systems Integration

My proposal should be reviewed and implemented in military and aero-
space programs and projects. The software industry may be able to review
it as an approach to see the capabilities suggested.

The senior managers, program and project managers, and teams that
are managing software and systems integration activities are responsible
for the integration of work products. The disciplines of system design,
software requirements, and design, build, and testing of work products
must show continuous improvements in quality throughout the software
life cycle.

For development of the work product vision for software and systems
integration, key stakeholders must ensure that the definition for work
product releases is understood from the start to the finish.

To be effective during integration activities, the following methods for
software and systems integration are included:

• Planning
• Communication
• Risk management
• Requirements
• Systems/software design
• Integration
• Execution
• Continuous integration
• Configuration management
• Quality
• Customer satisfaction

8.12   PLANNING

For planning, develop the SSIP and strategy to understand the systems you
integrate, including the environment, functions, and constraints. Ensure
requirements are testable, operational, and technically realistic. Consider
using an integration readiness review plan for operational criteria in the
integration environment.

The planning for software and systems integration activities involves
everyone from the start, including subcontractors and customers. The
programs and projects require integrated processes per released software

Software and Systems Integration  •  73

plans, installation, and checkout procedures. Before conducting software
and systems integration, lab operations implement a readiness review
to ensure that trained personnel are available and lab environments are
ready for integration activities.

8.12.1   Monitor Planning Progress

There have always been ways to track and monitor progress for planning
on software programs and projects. The planned resources of building
and supporting software and systems integration activities ensures that
development time and effort (cost and staff) are in place and receive the
go- ahead for implementation.

The projections of not only program and project managers but also
higher- level managers are important to ensure and provide broader respon-
sibilities. These managers are responsible for providing resources (i.e., staff,
managers, funds, development time, etc.) to enable the pieces to be in place
for programs and projects to follow plans and procedures. They will need to
know the amount of personnel that will be available months ahead of time
to evaluate the ability of the programs and projects to undertake new work.

Key measurement points are called milestones. They occur at points in
the software design/development life cycle as suggested in Table 8.1.

Another planning process to consider is to apply statistical control to
the software design/development life cycle. Many programs and projects
are familiar with this concept to manufacture work products. This tool
or concept can be implemented for software and systems integration.

TABLE 8.1

Key Measurement Points

Number Key Measurement Points Life Cycle

 1 Feasibility review Higher- level managers
 2 Early design review (EDR) Approval
 3 Required design review (RDR) Specification
 4 Code and integration testing Software design
 5 Start of software/systems integration testing Functional capability
 6 Combined operations (software and systems) Fully functional
 7 Full operating capability Release
 8 Monitor level 99% reliability
 9 Reliability level 99.1% improvement
10 Continuous level improvement goals 100% “happy customer”

74  •  Effective Methods for Software and Systems Integration

Measurements that fit within these control limits can reflect instability of
progress. Some processes are still good, but sometimes the processes fall
outside control limits.

Apply the principal of statistical control to a knowledge process, such as
having a projection of what is expected to be completed with a low defect
rate. The programs and projects at times follow expected plans and pro-
cedures to ensure control. If program and project managers are assigning
more personnel than planned, there will be an issue of getting back to the
proposed plan, or you can preplan the program and project objectives.

The higher- level manager would want to find out what the program and
project managers are doing to resolve this issue and if the customer is
going to be affected or resources are needed elsewhere, leading to more
time to perform integration and cost concerns.

Monitoring project programs will not fall out of the sky but should be
managed instantly. The first steps are to:

• Establish baselines
• Collect data from previous programs and projects
• Control work products by collecting basis metrics
• Use teamwork so everyone cooperates to ensure customer satisfaction

8.12.2   Comment

The failure to provide effective planning and coordination in preparation for
integration activities will ruin planning and coordination. There is intense
pressure when developed schedules require tick marks to be completed
and shown to customers. For planned schedules, customers get that warm
and fuzzy feeling when milestones are marked off, but to be honest, many
software and systems integrations are not complete. Always tell senior, pro-
gram, and project managers to be up front with teams and the customer to
ensure confidence that quality comes first and then schedules will follow.

8.13   COMMUNICATION

Communication encompasses channels for passing information to sup-
port interpersonal communications along with feedback and criticism
(Figure 8.3). The quality of communication in a program and project is

Software and Systems Integration  •  75

directly related to effectiveness. When the time comes for software and
system integration activities, it is essential that open information is shared
at both technical and interpersonal levels.

The technical level deals with the way information describing the work
product or the process is shared. On the interpersonal level, communica-
tion deals with feelings about the work product, work relationships, criti-
cism, and personality.

Information in a program and project should be captured and commu-
nicated in writing so the understanding and coordination can be shared
in the lab environment. In an electronic society in which paperwork is at a
minimum, written communication can be considered formal.

8.14   RISK MANAGEMENT

It is highly recommended that risk management is conducted for inte-
gration of software and systems so it is continuous and shows the risks
that occur during automation in software builds, installations, and test

Senior
Managers

Project
Managers

Program
Managers

Software/Systems
Test

Software
Managers

Lab
OperationsSoftware

Engineers

Customers

FIGURE 8.3
Communication lines.

76  •  Effective Methods for Software and Systems Integration

concerns. All risks are documented and reviewed each day during inte-
gration activities. The risk management concept is a continuous process of
identification and planned team meetings to resolve and answer problems
that could be found during integration. The basic process steps are sum-
marized as follows:

• Risk issues and concerns. The process begins with the identification of
issues and concerns. All integration teams (i.e., design, test, etc.) iden-
tify such issues and concerns through peer reviews and discussion of
continuous risks so it is known what could have an impact on sched-
ules. When possible, software subcontractor activities are included
in team risk reviews. Technical performance metrics are used as the
basis for risk identification and assessment.

• Risk reviews. Once a risk is identified, the identifying teams review
the risk. A risk is rated as belonging to one of three categories: high
level, midlevel, and low level. Risks rated as moderate or high require
program and project risk management action presented for senior
management review. Low- level risks are managed within teams and
are reviewed regularly to ensure risk mitigation.

• Risk management plans. After a risk is defined and assigned to a team,
that team will develop and implement risk management plans and
continue to assess risk status until the risk is addressed and closed.

• Risk monitoring. For risks assigned to teams, the team provides the
risk status using the risk management database. The team lead man-
ages and maintains the database for tracking and reviews. This data-
base generates status charts and reports for programs, projects, and
customer reviews.

8.14.1   Risk- Based Integration

Once the program and project managers agree on the estimates to create
a plan for risk- based integration, the plan assigns testing based on soft-
ware design/development and tests. Quality is the level of risk that could
affect software and systems integration activities. Risk- based integra-
tion is reviewed when analysis is performed to root out software design/
development and test defects.

During integration and analysis, the test team allocates development
and execution efforts based on risk. The procedures used are based on

Software and Systems Integration  •  77

reactive techniques to detect and sort out high- risk areas. When test
results are released, test cases executed, and bugs found during integra-
tion, you are able to trace the quality risks.

8.14.2   Risk Integration Standards

Examples of how risk integration standards, including those for qual-
ity, apply to embedded software that controls software and systems is
identified in ISO/IEC (International Organization for Standardization/
International Electrotechnical Commission) standard 61508. This stan-
dard focuses on risks. There are two primary factors that determine the
level of risk:

• Likelihood of problems occurring
• Impact of problems that could occur

Technical ideas such as coding and unit tests are the problems that arise
when likelihood concepts come into play.

During a program and project, we must reduce risk to a tolerable level
when applications are software improvements to a system or hardware
unit. We have to build quality from the beginning and not at the end
by making defect- preventing actions to software requirements, design/
development, and integration testing. Risk integration standards require
software requirements and test design to be structured. Hardware units
are visible, but inside these units is software that controls the hardware
so it comes alive. The movement of the hardware and software requires
multiple levels of testing.

8.15   REQUIREMENTS

The teams define and develop software requirements that are selected for
implementation and completion during software and systems integration.
Completeness and accuracy for software requirements are verified with
key work product developers. The customer should always be included in
the definition of the requirements to ensure there is complete and concise
understanding for their business needs.

78  •  Effective Methods for Software and Systems Integration

Problems discovered in defining and developing the requirements for
software are coordinated with higher- level system personnel and fixed
quickly to make sure schedules are not impacted for the release of the
work product. Derived requirements come into play when the perfor-
mances of software are defined and applicable to systems design needs for
delivery of the software work product for software and systems integration
activities. The definitions of software requirements are documented in the
development plan for process and work product standards. The measure-
ment of data and metrics generated are reviewed and verified for com-
pleteness by program and project plans.

All software requirements are identified for the automation of builds
and installations inside the software and systems integration environ-
ment. The software work products are integrated to be correct and reflect
continuous improvement.

8.15.1   Evidence of Requirements

Conformance to software requirements shows evidence that program-
and project- developed software and commercial off- the- shelf (COTS) or
nondevelopment items (NDIs) elements are defined and documented. The
documentation of installation procedures shows the evidence utilized for
the automation of software build tools. When subcontractors provide soft-
ware, those elements are identified by approved plans for use during
software and systems integration.

8.16   SYSTEMS/SOFTWARE DESIGN

The software design definition is developed and controlled by plans for
development or design. The constraints for the software are identified
during the start of the software design/development life cycle. There are
objectives that are required to meet schedules from the start to the end of
software and systems integration.

The software design engineer identifies risks and software restraints
that could occur during development and hinder schedules. The software
requirements are analyzed for software and systems integration to ensure
the software and systems or systems design work together and are viewed
to make continual improvements.

Software and Systems Integration  •  79

8.17   INTEGRATION

Before performing software and systems integration, lab operations imple-
ments a readiness review to ensure the lab environment is ready for design and
testing. What I mean by a readiness review is to create a high- performance
work team (HPWT). The following trained personnel should be in this team:

• Systems designer
• Systems engineer
• Software designer
• Configuration management
• Quality personnel
• Hardware designer
• Subcontractor (if required)

The HPWT will perform a software engineering review and audit of
each discipline in the software life cycle to ensure processes are being fol-
lowed per defined plans, procedures, and expected requirements from
the customer. By performing this audit and review, results are reviewed
and documented by the HPWT and presented to senior management for
discussion with affected program and project managers. It is hoped that
before programs and projects are ready to integrate work products into
the integration environment, processes are in place and compliant. The
program and project managers do not want to hear the following:

 ✓ “I have technical issues and concerns in terms that are understood
by other team members.”

 ✓ “My software does not work when delivered for software and systems
integration.”

 ✓ “Processes? We don’t have any processes defined and implemented.”

8.17.1   Team Coordination

When conducting informal or formal peer reviews, ensure guidelines
are understood by the team members from the start to the finish. Team
assignment responsibilities define the data collected for each peer review
and which tools are used to establish, collect, and store the required data.

Maintain the schedule or plans for new and revised work products to
include peer reviews at the completion of the entire work product. The
scheduled plan for a peer review should be divided and show incremental

80  •  Effective Methods for Software and Systems Integration

peer reviews immediately after completion of each section and should
not delay these until the end of the phase when there is limited time for
rework. The schedule includes dates for team training.

8.17.2   Plans and Procedures

Before software and systems integration testing is started, test plans,
documents, and procedures are required to be released through a docu-
mentation release system. All software and systems integration tests are
performed based on definitions of elements that are documented and
identified during integration.

8.18   EXECUTION

The software and system integration recommendations are to show exe-
cution of test- built systems for integration activities and to ensure the
builds provided for execution are not broken. Build and test times should
be reviewed to minimize problems that occur during the software and
system working together for integration activities. Acceptance tests are
performed along with the customer as witness depending on the program
and project requirements.

8.18.1   Acceptance Test

The acceptance test approach or methods will provide answers to ques-
tions asked such as whether the code will do the right thing during soft-
ware and systems integration. There are many considerations that apply,
such as:

• Understanding of the specification
• Efficient integration of design and test
• Improvement of processes
• Decreased regression tests and costs

Requirements define acceptance testing to validate implementation of
software and systems integration. The features must have acceptance to
involve automation methods, which is my first choice over manual steps.
The software and systems or units that are working together are accepted

Software and Systems Integration  •  81

when completion occurs. I feel acceptance testing shows that the code pro-
vided by the designer is working as expected and has been peer reviewed
and tested. Remember that the software and system are not ready for
release to the customer, so perform a readiness review before production.

8.19   CONTINUOUS INTEGRATION

Continuous integration is the automation of build and test processes,
starting first with the software code being checked into the computer
media library (CML) repository. Teams can assure that the code quality
is under configuration control. The automation of the build and testing
approach should be implemented to support the following:

• Source code capabilities
• Confidence in builds and testing
• Restoration of previous configurations
• Interaction of compilers and systems design personnel
• Building entire systems from scratch
• Team awareness of builds and test failures

8.19.1   Automation

The automation and generation of software and systems packaging ensure
confidence in personnel requests by the integration labs or the customer.
Staging builds and tests together supports requirements that could include
the package to facilitate the integration process.

Dedicated systems or a hardware platform should run tests continuously.
The software designers could hinder and slow testing if this discipline is
not applied. There are always new types of tests to be conducted. Test arti-
facts created by the design team provide a start to build automation.

8.20   CONFIGURATION MANAGEMENT

The definition of CM is a discipline applying an administrative pro-
cess and direction for work products developed during the software or

82  •  Effective Methods for Software and Systems Integration

hardware life cycle. The importance of CM is to identify and document
both functional (as- designed) and physical (as- built) work products.

The control of changes to work product plans and procedures during
software and systems integration provides and records the information
required to manage work products more effectively. Authorization is
an important factor; with it comes performing the methods for integra-
tion activities in lab environments.

Many programs and projects are required to document a configuration
management plan (CMP) to define how to implement sound and effec-
tive CM policies. The configuration status accounting (CSA) method
for recording and reporting information needed to control work prod-
ucts includes:

• Technical data
• Administrative data
• Design data
• Changes
• As- built products
• As- designed products

By looking at CM, you can see the programs and projects have a better
understanding of how each part constitutes the functions such as identi-
fication, configuration control, and status accounting and the importance
of CM. The CM method is shown in Figure 8.4.

Technical Data

Administrative

Design Data

Changes

As Built

As Designed
Accounting

Control

Identification

Configuration
Management

FIGURE 8.4
Method of configuration management.

Software and Systems Integration  •  83

8.21   QUALITY

The essential practice that teams should follow is quality. The more quality
teams adopt, the more successful they will become. At times within the
integration activities for both software and systems, teams will see higher-
quality software and systems efficiently produced and ready for delivery
to customers.

As mentioned in software design, peer reviews and testing can be imple-
mented early in the software and systems integration activities. The con-
cept of automation in building and testing software to ensure systems
work together provides the framework for how software design teams
write software.

Work toward perfection and show continuous improvement early in test-
ing and evaluations. Teams always think about the best way to improve the
processes for testing. Making mistakes or wrong decisions early provides
opportunities to learn from mistakes and have them addressed correctly.

Quality attributes ensure teams build and test the right work products.
These quality attributes are:

• Build and integrate the correct work product
• Build and integrate the work product to be correct

The relationship between program and projects makes it much easier to
understand the requirements early in the software life cycle. At an early
point in the life cycle, customers have opportunities to be involved and
provide comments and recommendations.

The major goal of effective building and testing for integration is to
prevent problems or defects early during the life cycle. Quality is the
responsibility of everyone on the team. In software, quality involves com-
munication with other members and discussions of issues and concerns.
In testing, teams are required to pursue perfection. To be a success, per-
form quality disciplines as early in the process and show improvement in
all those quality aspects that involve:

• Code quality
• Peer reviews
• Builds
• Testing

84  •  Effective Methods for Software and Systems Integration

Code quality and peer reviews are the key elements to ensure soft-
ware and systems integration are working together. Consistent pat-
terns for using quality solutions solve problems that consistently appear.
Experienced software designers incorporate better solutions, and ter-
minology is understood from the start of code development. Make sure
conversations are held with team members so there is consistent under-
standing about code quality. The software architecture allows code to be
more manageable and for changes to exhibit good- quality attributes for
code development as shown in Table 8.2.

8.21.1   Peer Review Assurance

I am a strong advocate for peer review assurance and will always be.
Allowing software engineers to build software often and provide software
that is ready for the test team to minimize the number of problems or
changes at one time will reduce the risk of defects and errors in the software.

The CMMI process model provides an understanding of integration
processes for software and systems integration. The integration process
requires a continual emphasis on “repeatable processes.” Conducting peer
and code reviews defines verification and validation when it is time to
audit the software processes performed in the software and systems labs.

Software designers work to requirements, write effective code, and take
pride in being considered excellent or exceptional at their profession. The
peer and code review process, which is a repeatable process, ensures that
other software designers review their code with proper software tools or
pair programming compliance to coding standards. Implementation of
high coding standards enforces software processes that are implemented
with defects or issues are resolved early in software design/development
stages, before software and systems integration starts.

TABLE 8.2

Code Quality

Quality Description Ensure

Code and unit test Tested software interfaces Test coverage on systems
Rules applied Prevent redundancies Roles and responsibilities
Team work Communication Clarity and understanding
Desktop integration Code design and test process Early detection deployment

Software and Systems Integration  •  85

8.21.2   Software and Systems Assurance

A fundamental objective of software and systems assurance is continuous
improvement in the quality of work products and processes during integra-
tion. The assurance and process improvements are achieved by defining,
documenting, measuring, analyzing, and improving the development and
integration processes to reduce error rates and flow time. The requirements
for assurance are documented in plans for software design/development and
a software quality plan (SQP). Results are reviewed by integration teams.

8.21.3   Additional Quality Concepts

There are additional quality concepts to review and understand when con-
ducting software and systems integration. If we are unable to explain or
say what quality is, then how does anyone know quality exists? Quality
does exist. What mechanism or tools helps us understand quality and
its meaning and definition? I have heard many engineers and test teams
question what quality is and why it is needed.

In software design/development, the quality concepts focus on the
degree to which software disciplines are implemented. I have said this
repeatedly; if senior, program, and project managers involve all teams in
planning to understanding schedules, and contribute and support pre-
sented schedules, then the software and test team will have confidence
from the start to succeed. The quality concepts will be made easier for the
quality teams to support the software and test teams better.

8.21.4   Improving Quality and Productivity

Improving quality and productivity for software basically indicates how well
quality meets the requirements and expectations for supporting software
and systems integration tasks. This assurance provides adequate, reliable,
and efficient software design/development lifecycles. The growth in com-
puter use for software and systems integrations places demands on increas-
ing high- level use and complexity.

The use of effective technology is a means to improve quality and productiv-
ity for programs and projects. Military and aerospace companies have looked
at software technology as a means to improve quality and better predict costs
and schedules required to develop and maintain very complex software sys-
tems. Current and future technologies support software design/development
processes throughout automation of software engineering practices.

86  •  Effective Methods for Software and Systems Integration

The quality infrastructure is a means to integrate the disciplines that
assist systems and software designers, CM, tests, program and project
managers, and so on. The communication between team members pro-
motes other team members for improving quality and productivity during
software and systems integration.

8.22   CUSTOMER SATISFACTION

Customer satisfaction is the concept of assuring the customer that effective
methods for software and systems integration have been compliant and do
meet concrete requirement expectations. Many mistakes are made when
programs and projects work to poorly defined requirements from the start.
Poor execution to system design and software requirements compromises
the quality of integration methods to deliver value or causes outright fail-
ure. Managers need to ensure customer expectations are understood; unex-
pected surprises could wreak havoc on program and project schedules.

When poor software and systems integration methods are not effec-
tive, program and project schedules lead to major problems with
customers.

Everyone wins when there is more focus on the success of the program
and project to meet budgets, schedules, and the customer’s satisfaction.
Strong management, effective team support, and the understanding of
what is required to be successful will lead to software and systems that are
in alliance with business needs as well as user expectations.

8.23   TAKING THE INITIATIVE FOR CHANGE

How many times have we heard someone say, “That’s not my job,” and
“I don’t want to change the way I do things”? It does happen often in the
field of software development. We know that things will become better
when we resolve issues and concerns, but at times we do not take the ini-
tiative to improve or there is not enough time.

Software and Systems Integration  •  87

The creation of software and systems integration problems has gener-
ated change that affects programs and projects. Numerous changes are
good, but taking time to get organizations working together can cause
problems. When someone states, “We can make integration of work prod-
ucts more effective,” we are not perfect. There is an integration environ-
ment established to find problems and fix them. People who are working
toward improvement shun others, do not listen, and then walk away. The
software companies need to fix this in their organizations, even down to
the teams supporting each other during integration activities.

When you see that problems occur during activities (i.e., software design/
development, testing, CM, quality testing) that are supporting integration,
you need to become an expert and take the initiative to change. Improving
processes to better fit your work environment will have everyone on the
same page. No more walking by and acting like you do not want to help
solve problems. That is your job. Change the way you do things now.

FURTHER READING

Augustine, N.R., 1983. Augustine’s Laws. Penguin Books, New York.
Black, Rex, 2002. Advanced Software Testing, Vol. 1. O’Reilly Media, Philadelphia, PA.
Boehm, B.W., 1992. Software Engineering Economics. Prentice- Hall, Englewood Cliffs, NJ.
Carnegie Mellon, November 2010. CMMI® for Development, Version 1.3, Improving

Processes for Developing Better Products and Services. Carnegie Mellon, Pittsburgh, PA.
DeMarco, T., 1982. Controlling Software Projects. Yourdon Press, New York.
Electronic Industries Alliance (EIA), Government Electronics and Information Technology

Association Engineering Department, August 1998.
Fagan, M.E., 1976. Design and code inspections to reduce errors in program development.

IBM Systems Journal, 15(3), 192–211.
Gilib, T., and D. Graham, 1993. Software Inspection. Addison- Wesley, Reading, MA.
Grady, R.B., 1994. Successfully applying software metrics. IEEE Computer, 27(9), 18–25.
Lipke, W., December 2003. Deciding to act. CrossTalk, the Journal of Defense Software

Engineering, 21–24.
Putnam, L.H., and W. Meyers, W., 1992. Measures for Excellence; Reliable Software on time,

Within Budget. Yourdon Press, Prentice- Hall, Englewood Cliffs, NJ.
Syzmanski, F., May/June 2011. Deliver applications that meet business needs. Better

Software, 34–35.
Weller, E.F., 1994. Using metrics to manage software projects. Computer, 27(9), 27–33.
Whitaker, K., 1994. Managing Software Maniacs. Wiley, New York.
Yourdon, E., November 1994. Software metrics. Application Development Strategies, ISO/IES

Standard 61508.

89

9
Software Subcontractor

9.1   INTRODUCTION

This chapter describes the methods that are performed by a software sub-
contractor to provide the necessary support and employment that would
benefit military and aerospace programs and projects. The software sub-
contractor can be hired for program and project planning, configuration
management, quality issues, software design/development, testing, and
execution of activities or tasks related to the delivery of software work
products to customers. The activities performed are in accordance with a
purchase contract, and the software work products are delivered to satisfy
and comply with specified acceptance and delivery requirements.

9.2   PROGRAM AND PROJECT SELECTION

The selection of a subcontractor for software programs and projects is
important due to the expectations and technical work disciplines required.
Selecting a subcontractor for contracted software design/development is
the responsibility of program and project managers.

The program and project managers provide the direction to perform
various job tasks related to the day- to- day software design/development to
be delivered for subcontracted work products. There is competition from
other subcontractors to obtain assigned work.

90  •  Effective Methods for Software and Systems Integration

The planning for the subcontracted work is performed during a pro-
gram and project start- up once decisions are made to employ outside
support. The outputs from this action are the responsibility of a software
subcontractor plan (SSP), but specific tasks can be assigned to this plan
or to other teams depending on organizational requirements or needs. A
statement of work (SOW) will list subcontractor requirements.

A list of requirements, expectations, and interfaces between the program
and project are documented in an SOW. The goals of selected software
processes are given to the subcontractor per the direction of program and
project managers in order to flow down plans for required tasks during
a software life cycle. This permits the software subcontractor to abide by
internal software processes that require objective evidence to be reviewed
and ensure goals are being accomplished.

The selection and search for a subcontractor is required by program or
project plans or the subcontractor program or project managers. Support
may include teams or the coordinated experience of software engineers for
understanding all aspects of a technical approach, evaluation, cost, esti-
mates, and software- related tasks as needed.

For many years, I have been in the role of a customer and subcontractor.
When you are the customer, allow the subcontractor to present his or her
case and the reason it was selected and under contract. Many WebEx and
face- to- face meetings are needed. The subcontractor will feel comfortable
and know the purpose for selection. Many subcontractors are uncomfort-
able when presenting what their company can provide to customers. Give
them a chance and let them relax. Be positive when presentations are pro-
vided for review and ask questions to see what the answers will be. Be
positive; some companies will not select you as a subcontractor but will
move on to the next customer. The learning process will benefit upcom-
ing subcontractors for understanding what customers will want to hear.
Again, be positive.

9.3   SUBCONTRACTOR APPROACH

The software subcontractor is an integral part of the team for software work
product development. Ensure progress by the appropriate subcontractor

Software Subcontractor  •  91

for software activities and progress is based on agreed evidence of comple-
tion. The program and project organizations, with the support of senior
managers, oversee the subcontractor’s work quality, engineering, and sys-
tems and are in continuous support as required by contract.

9.4   SOFTWARE SUBCONTRACTOR PLAN

The SSP provides the direction for the subcontractor hired and the pro-
gram and projects for understanding the requirements and guidelines for
both organizations. Each software subcontractor is responsible for con-
figuration management of his or her software at the subcontractor’s own
facilities in accordance with the plans and procedures and abides to the
standards, processes, and procedures of the program and projects under
the signed contract.

The plan identifies the program and project managers’ approach to
manage the required subcontractor’s effort. This plan will describe:

• The task for each subcontractor
• The processes for configuration management and quality audits
• Requirements
• Risk management
• Configuration management
• Schedules for delivery of work products

The plan includes support responsibilities and explanations for subcon-
tract development and how the subcontractor will be managed. The associ-
ate subcontractors and major subcontractors are defined in the plan along
primary roles that specify how the program and projects interface and
measure performance.

All subcontractor deliveries to a customer require receiving and
inspection of the software work product. Software could be delivered as
media or electronically. The data are stored with configuration manage-
ment for accountability and checkout for use. Hardware deliveries are
received as packages or boxes. This process is also defined in the plans or
internal procedures.

92  •  Effective Methods for Software and Systems Integration

9.4.1   Software Audits

The software audit is comprised of program and project reviews to be con-
ducted at subcontractors’ site of business by defined dates as documented in
the SOW. The subcontractor software plans and procedures are audited
per defined and documented audit methods to trace information for soft-
ware requirements to/from applicable test cases/test procedures and per
the signed contract.

The subcontractor plans that are audited must ensure the software test
environment performs its intended function and meets contract require-
ments. The purpose of this task is to ensure that the software under test is
qualified on acceptable test tools.

Established subcontractor process audit criteria are prepared and pro-
vided to the subcontractor before the audits are performed. An audit
checklist is provided, and audit questions will be filled out and then pre-
sented to the customer. The agenda and participants are identified using a
defined audit process applicable per the contract. Involvement in the soft-
ware first- article inspection (FAI) is the approach; I highly recommend
programs and projects prepare an FAI checklist and deliver it to the sub-
contractor to provide answers to questions before performing the audit.
The results save time and cost along with traveling all over the world. We
have the technology to perform WebEx or telecommunications capabili-
ties to discuss audits and action items instead of being at the subcontrac-
tor’s facility.

9.4.2   Audit Checklist

Appendix C provides an example of an audit checklist I developed and can
be used with subcontractors as well.

93

10
Software and System Delivery

10.1   INTRODUCTION

It is important to make the right decisions before delivery of software
and system end items or hardware to the customer. At times, schedules
become the priority before quality, and the lack of confidence in the cus-
tomer will have an impact on future working agreements and contracts.
Make sure that systems design, program and project planning, software
requirements, software design, and software and systems integration are
successful and that every step or milestone has quality built in during
the software design/development life cycle. Knowing problems still exist,
senior, program, and project managers do not show a tick mark to show
schedule accomplishments to customers. Be honest and up front with the
customer and know that quality comes first; then, schedules provide
the road map for the teams to produce effective work products.

The effective methods for software and systems integration will provide
assurance that customer requirements are met before any thoughts about
hurrying delivery. Stay the course and do not deviate from the plan. Before
delivery of software and systems to customers, the following are important:

• Software media and data verification and validation are complete.
• Software documentation is released and ready for delivery.
• Necessary FAIs (first- article inspections), FCAs (functional config-

uration audits), and PCAs (physical configuration audits) are con-
ducted, and all action items are closed.

94  •  Effective Methods for Software and Systems Integration

10.2   SOFTWARE MEDIA AND DATA DELIVERY

Software media are identified and labeled per an identification scheme.
The identification and media labeling should be in accordance with secu-
rity requirements for a program and project as presented in a defined and
documented security plan.

Marking information can be displayed electronically for all software
media and on the exterior of the physical media (i.e., disk sets, DVDs, CDs,
etc.) containing software. Software work products are identified in program
and project development plans. An identification approach is assigned to
all released software and the accompanying software documentation. An
example definition of a software part number can be used as follows:

• Master: Stays in the CML (remember this all designers/testers)
• Copy: User checkout for software design, test, troubleshooting, and

the like
• Disaster copy: Keep off-site for retrieval due to lost or destroyed media

10.2.1   Software Documentation

Software documentation provides defined and documented releases for
various levels of software and systems integration. Software documenta-
tion can be used as follows:

• Systems engineering plan (SEP)
• Development plan (DP)
• Software configuration management plan (SCMP)
• Software test plans and procedures
• Software and systems integration plan (SSIP)
• Quality plan (QP)
• Documentation for version control
• Build and installation procedure

10.2.2   Version Control Documentation

There should always be documentation to provide version control that will
identify and describe software versions of existing work products. This
type of documentation, such as a version control document (VCD), is used

Software and System Delivery  •  95

to release, track, and control the software versions at the software and sys-
tem levels.

10.2.3   Build and Installation Procedure

The build and installation procedure describes in detail how to build and
install software for systems integration. The configuration management
team, with input from software designers, develops build and installation
procedures for software and systems integration builds. The CM organi-
zation inside a program and project is responsible for the development,
control, and release of build and installation procedures.

10.2.4   Delivery Package

The software and systems delivery package consists of software media and
documentation associated with the version of the software, printed copies,
and identified system work products or hardware packages. Contractual
software and systems delivery requirements or agreements ensure delivery
to customers.

Software deliveries are used to meet contract delivery requirements or
obligations the program has agreed to accomplish. Senior management
and program and project managers along with teams provide coordinat-
ing and delivering the package document program and project schedules
as a completed milestone.

10.2.5   Final Software and Systems Delivery

The final software and systems delivery is the last delivery once program
and projects have completed the FAI and FCA/PCA. The following steps
provide an example:

• Integration testing is completed; results are acceptable and meet
technical requirements.

• Customer accepts the as- designed and as- built product and associ-
ated documentation.

• A customer notifies that software or system product is received.

In all phases, the delivery system provides processes and procedures to
get things done right. By strengthening these delivery systems, programs
and projects can sustain continuous improvement. If these systems are

96  •  Effective Methods for Software and Systems Integration

ignored, you run a risk of implementing ineffec tive delivery systems. With
a good system in place and constantly improved, the chance for improving
work products and services increases.

All programs and projects have customers. Always make the customer
happy. The customer can be part of the software and systems integration
activities. This environment serves the needs of customers as shown in
Figure 10.1.

To survive the global market, programs and projects must continu-
ously improve their work products, services, and delivery systems.
Configuration management streamlines the ability to identify and refine
the requirements during software and systems integration and through
the entire software life cycle.

Business goals are accomplished when delivery systems are created to
support those goals. The delivery system must be effective and efficient.
The right way to build these systems is to comply with the business pro-
cess infrastructure.

Programs and projects create work products and services to meet a cus-
tomer’s needs and need to develop the right delivery systems. Always improve
the delivery system to improve the future customers coming your way.

10.3   FIRST ARTICLE INSPECTION

An FAI for software is conducted to examine subcontractor production
units and if the software is ready for delivery to the customer. If the subcon-
tractor cannot complete all of the tests for the production unit, the FAI will
not serve its purpose. Military or aerospace companies are doing a subcon-
tractor a favor by allowing the subcontractor to use his own environment

Customer Needs

Products and Services

Delivery Systems

FIGURE 10.1
Customer needs.

Software and System Delivery  •  97

for the formal test. Why should a company receive a production unit with-
out the applicable documentation supporting a formal acceptance test? If a
subcontractor cannot find any way to complete a test, call the software FAI
off until the subcontractor is ready for the FAI to be conducted.

Military and aerospace programs provide detailed test cases and regres-
sion analysis for fixing problems, including the following:

• The test stand description that confirms the components (part
numbers) matches the conform test stand.

• The test cases/reports are rerun for the software changes.
• The analysis shows the fix will not affect other parts of the system.
• The new software has been tested through the test stand and wit-

nessed by a company engineer to confirm the new implementation
is working properly.

Subcontractors work with the customer’s engineering teams to finalize
the regression analysis. Software FAI checklists include:

• Verification requirements: For embedded software, state the approved
production test procedure (TP), including software version. State
that testing is completed, results are acceptable, and the software
meets technical requirements.

• Data package: The product released and approved and software meet
requirements allocated to the software. All requirement deviations
are recorded and approved. Software life- cycle data comply with
plans and standards and are controlled with software plans. Software
and life- cycle data are in a controlled software library and archived
both on-site and off-site.

• Version control document: Traceability is established to system name,
subcontractor system part, and document number. Source code
components for the software are identified, and problem reports are
resolved since the last product baseline was identified. Version docu-
mentation identifies the software life- cycle environment and operat-
ing software. Software and verification tools are identified.

• Verification process: Verification testing is conducted, defined, and
controlled. Verification and validations are complete, and discrepan-
cies are captured in problem reports.

• Product release: The executable object code was generated from
released, controlled, archived source code and released procedures.

98  •  Effective Methods for Software and Systems Integration

The released software is identical to the tested software. If not iden-
tical, the differences must be specified and justified. For loadable
software, the released object code loaded on media is identified in
compliance with loadable software standards. The displayed soft-
ware configuration identifiers or checksums match high- level and
version- controlled procedures. For loadable software media, the label
indicates acceptance by quality/configuration management teams.

• Acceptance test: The acceptance test environment is defined and con-
trolled, and the TP is approved and released and under configura-
tion control.

• FAI completion: There is evidence of software acceptance, and action
dates for action items are defined; the software FAI checklist is pro-
vided to stakeholders.

10.4   FUNCTIONAL CONFIGURATION AUDIT

The FCA verifies that the work product performance complies with the
hardware, software, and interface requirements specification (IRS). It is
required that the test data are reviewed and verified, showing that the
hardware and software perform as required by the functional and allo-
cated configuration identification. The FCA provides the prerequisite
to acceptance of a configuration item. A technical understanding is a
requirement to be accomplished concerning the validation and verifica-
tion per the TP concerning software. FCA activities involve the following:

• Verification that the work product performs to required configurations.
• Major or minor engineering changes are released.
• A product and configuration baseline is established.

10.5   PHYSICAL CONFIGURATION AUDIT

The PCA identifies the baseline for production and acceptance of the
work product, both hardware and software in Table 10.1. The PCA veri-
fies that the as- built configuration correlates with the as- designed product

Software and System Delivery  •  99

configuration, and the acceptance test requirements are comprehen-
sive and meet the necessary requirements for acceptance of the produc-
tion unit. Equally important, it demonstrates that management systems
for quality, engineering, and configuration management information
accurately control the configuration of subsequent production units.
Incremental and progressive audits are performed on systems and major
assemblies to build up to the PCA.

PCAs have an option to be conducted concurrently with the FCA.
Extracts from the previous FCA audit plan are made available to the team.
Quality assurance and senior management ensure available budget, and
engineering personnel execute per the PCA audit plan. Metrics captured
for the FCA are similar for the PCA for compliance and review during the
audit. The PCA entry checklist is provided in Table 10.2.

After reviewing the materials presented, including known issues
and subcontractor status, the recommendations by the PCA team are

TABLE 10.1

Configuration Baseline

Baseline Description Documentation

Functional
baseline

System design
requirements

System design: high- and lower- level
documents

Allocated
baseline

System and software
requirements

Systems design documents
Requirements documents
Design documentation
System design: lower- level documents
Software test documents

Product
baseline

Aggregation of internal
systems components into
software work products

Operations and maintenance documents
System and software design documents
Version control documents (VCDs)
Software user documents, manuals, and
procedures

Systems and software installation
procedures

High- level
product
baseline

Aggregation of systems
design and software
high- level documentation
into a component

Software user documentation, manuals, and
procedures

Systems and software installation
procedures

Lower- level
product
baseline

Aggregations of systems
design and software and
lower- level documentation
into a component

Software user documentation, manuals, and
procedures

Systems and software installation
procedures

100  •  Effective Methods for Software and Systems Integration

favorable, so the PCA may proceed. PCA execution and the metrics will
be completed, and the schedule for the PCA final meeting is coordinated
with the customer.

PCA activities are as follows:

• The as- built configuration correlates with the as- designed product
configuration.

• The acceptance test requirements are determined per quality assurance.
• Engineering changes are released.
• The final product baseline is established.

TABLE 10.2

PCA Entry Checklist

Entry Checklist Yes No Achieved

Kick- off meeting is held to define
roles and responsibilities for conduct
and performance of formal audit.

X Roles and responsibilities defined
and used as guideline to support
the formal audit.

Delivery is received of data packages
(i.e., plans, procedures, drawings,
system designs, media, logs, etc.)
to support the formal audit.

X All data packages and artifacts are
provided as requested by the
formal audit team.

Approved nomenclature and terms
are agreed on as applicable during
formal audit.

X All nomenclatures and terms are in
accordance with the formal audit
and understood by the formal
audit team.

List of current deviations, waivers,
and higher- level changes are
requested or approved.

X Action item 1

Approved requirements
documentation identifying the
baseline is available.

X Approved requirements
documentation identifying the
baseline is provided to the formal
audit team.

As- built records are complete and
released.

X Action item 2

AI Description ECD

1 List of current deviations, waivers, and higher- level changes
requested or approved are not ready for use by the formal audit
team.

mm/dd/yyyy

2 As- built records are not completed and released for use by the
formal audit team.

mm/dd/yyyy

Note: AI, action item.

Software and System Delivery  •  101

Appendix D provides a checklist template that can be used to conduct
and perform software PCAs at a level of understanding for required con-
tractual documentation, media, and facilities setup for integration. The
military and aerospace programs and projects utilize the concepts and
checklist steps to ensure delivery to a customer and hand off the work
product. At the closure of the PCA, the statement to the customer is: “It is
all yours now”—have fun.

FURTHER READING

Electronic Industries Alliance (EIA), Government Electronics and Information Technology
Association Engineering Department, August 1998.

Humphrey, W. 2006. Sweet Predictability. World of Software Development, 14(2), 14–17.
Keyes, J., 2004. Software Configuration Management. CRC Press, Boca Raton, FL.
MIL- STD-480. 1998. Configuration Control: Engineering Changes, Deviations, and Waivers.
MIL- STD-973. 1992. Configuration Management April 1992. This military standard is

approved for use by all departments and agencies of the Department of Defense
(DOD).

MIL- STD-1521B. 1985. Technical Reviews and Audits for System, Equipment, and Computer
Software,

103

11
Product Evaluation

11.1   INTRODUCTION

The product evaluation is an integral part of program- and project- level
activities that is scheduled and performed by quality software personnel
on an ongoing basis. These evaluations form the basis for certification that
software design/development activities have been performed in accor-
dance with program and project plans and procedures and are in line with
required quality requirements.

11.2   QUALITY ASSURANCE

The quality assurance team or organization for software provides prod-
uct evaluation processes and specific quality assurance for effective soft-
ware engineering methods and use of software tools. The quality team
does ensure compliance to software design/development standards and
control of work products and changes. The practice of quality manage-
ment is applied throughout the software design/development processes. It
is important that quality attributes become the responsibility of everyone
supporting development environments in software companies and mili-
tary and aerospace programs and projects. The management of quality
for software activities is summarized in engineering reviews, change con-
trol, or subcontractor audits and compliance to standards, verification,
and validation.

104  •  Effective Methods for Software and Systems Integration

11.2.1   Software Quality Plan

The software quality plan (SQP) describes and documents the software
quality assurance roles and responsibilities to ensure that programs and
projects are following procedures and processes defined per development
plans and other applicable standards.

This plan provides a documented process for assessing software life-
cycle processes and their outputs to obtain assurance that objectives
are satisfied; deficiencies detected and evaluated, tracked, and resolved;
and software work products and software life- cycle data conformed to
intended requirements.

Quality reviews/internal audits are performed to ensure compliance
with released processes and AS9100C for measurement, analysis, and
improvement activities to be conducted; senior managers must adhere to
this review and audit. These activities include examining:

• Program and project artifacts
• Released processes and procedures
• That organizations meet the configuration management require-

ments of Electronic Industries Alliance (EIA) standards
• That organizations meet the requirements of AS9100C

11.2.2   Software Engineering Process Group

A quality assurance internal organization for software has a relationship
with the software engineering process group (SEPG). In programs and
projects, this is a group or team with assigned responsibilities for moni-
toring software process activities.

This group operates with appropriate functional areas and software
personnel and serves as the software process improvement center for sys-
tems and software engineering. The program and project managers, focal
points, configuration management, quality team, and team members
make up the group and perform the following functions:

• Evaluate company and program best practices to promote these best
practices to document software engineering processes and procedures

• Establish and use a process for receiving, evaluating, and acting on
and reviewing results for proposed processes, procedures, and tech-
nology changes

Product Evaluation  •  105

• Develop software processes and procedures for the entire life cycle
that comply with software engineering standards, comply with con-
tractual requirements, support ISO (International Organization for
Standardization) 9001 and AS9100 requirements:
• AS9100C quality management system (QMS) software

requirements
• AS9100D QMS audit requirements
• Obtain software program and project manager approvals of soft-

ware engineering processes and procedure changes released for
use by engineering

11.3   PRODUCT EVALUATION SCHEDULE

The quality organization or team performs product evaluations to ensure
software design/development. Test and integration phases are conducted
per a product evaluation schedule (Figure 11.1).

11.3.1   Senior Managers

Senior managers lead lower- level program and project managers. All
teams are affected when the pressure is on to produce, show results with
no mistakes, and deliver work products on time. The customer is always
right because if programs and projects do not deliver work products on

Software
Requirements
Method

Software
Design
Method

Software
Engineering
Build Method

Software
Engineering Installation
Methods

Software
Integration
Method

Systems
Integration
Method

Software Quality
Assurance
Method

Softwares and
Systems
Delivery
Method

Product Evaluation Schedule

FIGURE 11.1
Product evaluation schedule.

106  •  Effective Methods for Software and Systems Integration

time, panic and chaos occur. That is when you see the importance of qual-
ity factors come into play, and milestones are achieved and are a success.

11.3.2   Program and Project Managers

The program and project managers are required to provide a vision state-
ment and describe the benefits, goals, and objectives for developing a work
product or system for delivery. The work product or system should be the
highest priority for customer requirements to identify the importance of
business criteria and requirements. When communication or coordination
is not provided to the responsible team, the failure point occurs. A defined
vision statement is an example list that program and project managers are
responsible for producing; it includes issues related to the following:

• Team objectives
• Risk mitigation
• Issues and concerns
• Root cause (RC) analysis
• Corrective action (CA) plans
• Significant accomplishments

The focus of successful program and project managers is the team, pro-
cesses, and work product. A manager who fails to communicate early
in the software development process could pay a heavy price by making
wrong decisions. The manager who pays little attention does run into
risks if competent methods and tools are not made available to the team.
Having a solid program and project plan does not hinder the success of
the program and project. Team members need to be highly skilled soft-
ware people. The talents that the team should apply are:

• Motivation
• Organization skills
• Attention to business goals
• Work ethics

The objectives for product evaluations are established, and solutions, tech-
nical constraints, and alternative solutions are always a consideration. The
system and software/design developers, along with test, configuration man-
agement, and quality teams, define objectives. The product objectives identify
the goals for design and development of data, which provides functionality

Product Evaluation  •  107

in a quantitative manner. The program and project managers select the best
approach with consideration of constraints imposed by delivery deadlines,
budget issues, available team members, and technical solutions to problems.

Processes that are understood provide the framework to implement
effective plans and procedures for software design/development activities.
The framework details the number of tasks, milestones, and applied qual-
ity factors to enable activities to adapt to requirements for programs and
projects. Aspects of configuration management and quality assurance are
important to the independent nature that occurs during the process.

11.3.3   System and Software Team Participation

Independence of quality support is ensured by the separation of report-
ing chains to a level that is independent of a program and project. This
independence for the quality team increases the objectivity of the product
evaluations, which allows the team to provide a better oversight function
and involves the system and software teams. The quality team participation
in formal reviews does provide team support for product evaluations, and
reviews are scheduled and coordinated within team and life- cycle activities.

Each evaluation or review conducted by the quality team generates
reports containing the status of the audit, any findings, observations, and
recommendations. Compliance, noncompliance, and opportunities for
improvements are documented in quality reports and tracked for closure
with support from program and project managers.

11.4   ARTIFACTS

Development of system and software work products yields artifacts, includ-
ing specifications, plans, and procedures. Artifact information associated
with quality product evaluations includes software configuration records,
testing records, and other artifacts associated with activities, including:

• Audit records (i.e., electronic or paper) associated with product
evaluations

• Audit and product evaluation checklists
• Audit results and audit reports

108  •  Effective Methods for Software and Systems Integration

11.5   AUDIT FINDINGS

Quality organizations or teams utilize criteria audit finding derived from
software plans and internal procedures to perform scheduled product
evaluations. Product evaluations include:

• Review of plans and procedures that oversee programs and projects
to determine and select appropriate product evaluation criteria

• Review and analysis of the results of previous product evaluations
• An assessment of whether implemented processes are compliant or

noncompliant
• Identification of issues or an opportunity for improvement
• Additional product evaluations required

The results of each product evaluation are recorded in evaluation plans
and are added into databases recording summary information from per-
forming an evaluation. The quality team uses these evaluations to indicate
if processes are compliant, noncompliant, or there is an opportunity for
improvement. Other information may be developed as needed to address
team activities or processes. Information on CAs for follow- up of deficien-
cies reviewed and discovered during product evaluations are also main-
tained in the applicable databases.

Quality team members generate reports weekly or monthly and are pro-
vided to managers.

The weekly/monthly team report data are a record of any issues, non-
compliance, opportunities for improvement, and so on that were identified
and documented during product evaluations, and the status of all open
items requiring a CA is recorded and logged into required databases.
Metrics are collected weekly or monthly.

11.6   CORRECTIVE ACTIONS

A corrective action is required to eliminate or mitigate the cause of
a detected nonconformity or other undesirable situations to prevent
recurrences during product evaluation. Two types of a CA initiated are
as follows:

Product Evaluation  •  109

• The root cause (RC) requires RC analysis and actions taken to
address the analysis.

• The immediate action (IA) is taken to address a direct cause and pre-
vent recurrence of a specific nonconformity.

Collective analysis is performed periodically to monitor adverse trends
of detected nonconformities and undesirable situations that may not
have been addressed by an RC or IA analysis. Results are recorded and
provided for senior manager reviews of progress/status and overall pro-
cess performance. The review may be accomplished through a corrective
action board (CAB).

Appropriate reviews of the CA and IA should be conducted regularly to:

• Monitor progress/status and overall process performance (e.g., time-
liness, efficiency, effectiveness)

• Review adverse indicators and trends
• Resolve issues or elevate them to the proper forum or level of man-

agement for resolution

Quality gates come into play to ensure process and work products are
compliant (Figure 11.2).

Communication

Ensure Resolution to
Corrective Actions

Evaluate
Processes and

Work Products

Establish Records

FIGURE 11.2
Quality gates.

110  •  Effective Methods for Software and Systems Integration

11.6.1   Corrective Audit Plan

The product evaluations performed on deliverable work products produced
during each product development phase ensure compliance to require-
ments. Problem definition, investigation, RC analysis, software design/
development, and implementation are verified in the corrective audit
plan (CAP).

11.7   QUALITY METRICS

In multiple programs and projects, software engineering is required to
produce high- quality systems within a defined time frame to ensure reach-
ing customer expectations. To achieve this requirement, effective meth-
ods and current software tools should be used to produce quality metrics.
Trained senior managers and program and project managers measure if
high quality is to be reviewed. The quality of a system, application, or work
product is only as good as the requirements that describe problems and
test results that are discovered early in the process.

The quality metrics collected by software engineering to ensure program
and project’s delivery schedules, what is in- work, and completed product
evaluations. These types of metrics provide an indication of the effectiveness
of a software engineer, test teams, configuration management, and software
quality personnel. An example of quality metrics is shown in Figure 11.3.

11.8   QUALITY MANAGEMENT SYSTEM

The QMS is required to have processes documented and executed with
knowledgeable people and teams. At times, metrics are reviewed and
monitored to ensure processes are showing improvement.

Customer focus is QMS and provides the framework to say; what you
do, do what you say, prove it, and show improvement. The standards for
QMS are AS9100, AS9100C, AS9100D, SAE AS9110, and ISO 900, which
are the models for:

• Quality requirements
• Design and development

Product Evaluation  •  111

• Production
• Software and systems installations

The support of CMMI® provides the basis for conducting product evalu-
ations, reviews, and audits to ensure compliance to requirements as shown
in Figure 11.4.

Measuring quality does ensure a program’s and project’s operational
goals are successful during the software design/development life cycle. It
is so important to measure software engineering processes and determine
whether programs and projects are consistently improving. If quality met-
rics are not used, then there is no way to determine if any improvement is
within sight. If there are no improvements, it means you are lost, confused,
and out there somewhere during software design/development activities.

By evaluating productivity and quality, teams and management estab-
lish goals for improvement of the software processes. Using quality met-
rics, baselines become more manageable and benefit the program’s and
project’s processes to make sure work products operate at a higher level
of consistency.

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

Complete Scheduled In-Work

FIGURE 11.3
Quality metrics.

112  •  Effective Methods for Software and Systems Integration

Numerous programs and projects run on collected data. The goal is to
make software work products and processes better and more cost effec-
tive. Data are the key to important decisions. Many problems are linked to
using poor- quality data, including:

• Poor estimations of program or project costs
• Not meeting schedules
• Not having effective staffing of personnel
• Flawed software architecture designs
• Poor design decisions
• Ineffective testing decisions

The information on quality measurements is everywhere, and programs
and projects have different definitions and requirements when it comes to
the quality of data measurements. Mistakes contribute to ineffective infor-
mation for quality improvement. The most common errors in measuring
data are the following:

• Not understanding the measurement goals
• Teams not involved in quality improvement decisions
• Management sponsorship for measurement of quality metrics or data
• The collection of poor data inside program and project development
• Poor data collection and analysis

To help the need for quality and metrics, the Software Engineering
Institute (SEI) CMMI version 1.3 for the development of measurement and

Compliance to
Requirements

Establish
Requirements

Criteria

Define and
Document

Requirements

Ensure
Requirements

Are Understood

Control Work
Products per
Requirements

Reviews and
Audits

(Requirements)

FIGURE 11.4
Compliance to requirements.

Product Evaluation  •  113

the analysis method can be used. This method allows programs and proj-
ects to perform quality product evaluations at a high level and to establish
metrics in standards and best practices.

11.9   SOFTWARE PROCESS

The software process is effective and followed if programs and projects
have the discipline to enforce process needs and to follow these processes
at all times when product evaluations are conducted. Every software pro-
gram or project encounters problems as it moves through the life cycle for
software design/development.

Proven solutions to these problems should be addressed early and
fixed quickly. Established process patterns show a consistent method for
explaining problems in the context of software processes.

11.9.1   Software Process Assessment

The existence of the software process assessment in programs and proj-
ects does not guarantee that software work products will be delivered to
the customers on time and will meet their needs. The process itself can be
addressed and assessed to ensure that the process meets a set of basic crite-
ria to show successful software engineering practices will lead to effective
software and systems integration to improve processes. The approach for
software process assessments and audits is proposed as follows:

• Standard CMMI Appraisal Method for Process Improvement
(SCAMPI)

• ISO 9001
• QMS
• AS9100C

11.9.2   Software Reviews

Software reviews provide the framework and detailed requirements for
verifying/validating design/development efforts. It is important that per-
forming reviews that are successful will ensure achievement in all speci-
fied requirements for software design, test, configuration control, and

114  •  Effective Methods for Software and Systems Integration

quality to released configuration baselines. Reviews improve the individ-
ual and team efforts in maintaining a professional setting where software
is developed for profit, cost reduction, and service quality improvement.

There is no clear- cut approach to performing software reviews for multi-
ple companies and military and aerospace programs. At times, ideas, sug-
gestions, standards, and concepts are adopted or implemented to improve
the quality of software management, software design/ development efforts,
subcontractor deliveries, and customer expectations. It is frustrating and
confusing when it is time to perform software internal and formal reviews.
We always ask what is required, who needs to participate, and what results
do we receive for performing software reviews. The answer is quality for
delivery to satisfied customers.

11.9.3   Software Process Improvement

The process assessment concept proposed in Section 11.9.2 brings order
to the stress and chaos for design/development activities, which can lead to
failure of software and systems integration. There are no easy answers,
but there are alternative options available to system and design/ software
engineers, test teams, and configuration and quality organizations.
Software process improvements become successful if the model for pro-
cess improvements in Figure 11.5 applies.

11.10   STRESS MANAGEMENT TECHNIQUES

Just in case organizations or team members have rough days and are
struggling with processes and other team members, there is a seven- step
management technique I would recommend, which does work:

• Picture yourself near the ocean.
• The ocean is blue and crystal clear.
• Birds are flying by and chirping.

Communication Understanding Discipline Deployment
Managers and Teams Questions and Answers Do it Right Implement

FIGURE 11.5
Process improvements.

Product Evaluation  •  115

• You are the only one there and in total seclusion.
• There are soothing sounds, and the air is filled with serenity.
• You can easily make out the faces of the team members under water.
• See—you are smiling.

11.11   SOLVING QUALITY ISSUES

At times, there are problems with the delivery of work products to software
and systems integration facilities and to customers. The quality engineers
solve process issues and concerns; they are unable to fix code and test soft-
ware but participate in peer reviews and witness integration test activities.

The quality engineers provide assistance and help program and project
managers look good and become successful, but they need to listen and
understand the roles and responsibilities of quality engineering. The qual-
ity factors are essential and important to understand.

FURTHER READING

AS9100C. 2010. Quality Management Systems—Requirements for Aviation, Space and
Defense Organizations.

AS9101D. 2010. Quality Management Systems, Audit Requirements for Aviation, Space, and
Defense Organizations.

Carnegie Mellon, November 2010. CMMI® for Development, Version 1.3, Improving
Processes for Developing Better Products and Services. Carnegie Mellon, Pittsburgh, PA.

Kant, R.K., 2006. Software Engineering Quality Practices. Taylor & Francis, Boca Raton, FL.
Pressmen, R.S., 2005. Software Engineering, a Practitioner’s Approach, 7th edition. McGraw-

Hill, New York.
Wellins, R.S., D. Schaff, and K.H. Shomo, 1994. Succeeding with Teams, Lakewood Books,

Minneapolis, MN.

117

Appendix A: Acronyms
and Glossary

Acceptance Criteria: The criteria that a system or component must sat-
isfy to be accepted by a user, customer, or other authorized entity.

Audit: An independent examination of a work product for software or set
of work products to assess compliance with specifications, stan-
dards, contractual agreements, or other criteria.

Baseline: A specification or product that has been formally reviewed
and agreed on and can only be changed through formal control
processes.

Build: Operational version of a software product incorporating a speci-
fied subset of capabilities that informal and formal work products
include in multiple configurations.

Build Engineer: A role for an integrator to provide a build strategy and
build tools to create software baselines ready for test and integration.

Build Request: Requests to software configuration management to pro-
vide software builds for software systems and use for computer
labs and support the formal test.

Capability Maturity Model Integration: Collection of process models
and methods for use in new disciplines to be integrated for orga-
nizational structures.

Certification: A written guarantee that a system or computer program
complies with its specified requirements.

Change Control: The processes by which a change is proposed, evalu-
ated, approved or rejected, scheduled, and tracked.

Code and Unit Testing: Written routines that specify the disciplines where
data is represented, design is understood, data is understood, soft-
ware developer notes, test results.

Computer Data: Data available for communication between or within com-
puter equipment.

Computer Language: A defined structure devised to simplify communi-
cations with a computer.

Computer Program: A sequence of instructions for processing autho-
rized changes per a computer system.

118  •  Appendix A: Acronyms and Glossary

Computer Program Library: Provides permanent archival storage for
software and related documentation.

Computer Software Component: A logical or functional grouping of soft-
ware units to which the configuration management tools assign a
unique name, supplied by the software designer.

Computer Software Configuration Item: An aggregation of software
designated for configuration management and control.

Computer Software Units: File names that consist of work product fol-
lowed by a descriptive software unit name (abbreviated to meet
operating system and character limits) plus version numbers.

Configuration Audit Plan: Plan that is used as configuration audit steps
and instruction for internal and formal audits performed.

Configuration Item: Individual or significant part of a system that
ensures changes are controlled, configuration status account-
ing records maintained, and audits performed to verify product
configuration.

Configuration Management: The process of identifying and defining the
configuration items in a system, controlling the changes and release
of these items throughout the system life cycle, and recording and
reporting the status of change requests to verify completeness.

Configuration Management Plan: It establishes a well- documented and
established configuration management and control practice for the
overall software system baseline to be maintained in the software
design/development and system integration facilities and to reflect
a set of controlled and configured products and documentation.

Configuration Status Accounting: The recording and reporting of
information needed to manage a configuration, including a list of
approved changes and documentation.

Control Files: Files stored in a computer and controlled and password
protected.

Corrective Action: Repair detected nonconformities in defined processes
or other undesirable situations to prevent recurrences.

Corrective Action Board: A review board to detect nonconformities and
undesirable situations that may not have been addressed. Results are
recorded and provided for senior management reviews of progress/
status and overall process performance.

Corrective Audit Plan: Problem definition, investigation, root cause analy-
sis, software design/development, and implementation are verified.

Appendix A: Acronyms and Glossary  •  119

Critical Design Review: A formal meeting at which a critical design is
presented to the user or customer for comment and approval.

Data: A representation of facts, concepts, or instructions suitable for
communication and interpretation for processing.

Data Management: Controls the acquisition, analysis, storage, retrieval,
and distribution of data.

Defect: The aspect of software design/development coding issues when a
work product diverges from product designs.

Delivery: The point in the software design/development life cycle at
which a product is released to its user for operational use.

Design: The purpose of defining the software architecture, components,
modules, interfaces, and data for a software system to satisfy spec-
ified requirements.

Design Phase: The period of time in the software life cycle for software
design/development.

Development Folder: The detailed design for newly developed software
capabilities will be documented in the development folder and
reviewed during internal detailed design reviews.

Development Plan: Establishes the plan for development of software
during the phase of the program. This plan establishes system-
level engineering life-cycle standards, practices, and guidelines
for development of CI (configuration item) and non- CI system
software.

Documentation: A collection and management of documents identifying
plans, processes, and procedures.

Drawing: A computer depiction of graphics or a manually prepared
graphic representation of a part or product.

File Name: A term given by the software designer to a specific collection
of data.

Firmware: Computer programs and data loaded in a class memory of
hardware that contains the software.

First- Article Inspection: The inspection performed to ensure software
engineering requirements and processes have been applied to
acceptance testing and delivery to customers.

Formal Testing: The process of conducting testing activities and report-
ing the results in accordance with approved test plans.

Functional Configuration Audit: Prerequisite to acceptance of the con-
figuration item. A technical understanding is accomplished con-

120  •  Appendix A: Acronyms and Glossary

cerning the validation and verification per the test plan concern-
ing software.

Hardware: Physical equipment used in data processing, as compared
to computer programs, plans, procedures, and associated
documentation.

Implementation Phase: The period of time in the software life cycle
during which software work products are created from design
documentation.

Informal Engineering Build: Build that is performed with no formal
authorization and coordination is applied with teams to ensure
the informal engineering build environment is set up.

Inspection: A formal evaluation in which software requirements,
designs, or codes are examined in detail to detect faults, violations
of development standards, and other problems.

Institute of Electrical and Electronics Engineers (IEEE): Accredited by
ANSI (American National Standards Institute) standards.

Integration Testing: An orderly progression of testing which elements of
software and hardware are combined and tested.

Interface Requirement: A requirement that specifies a hardware, soft-
ware, and database in which a system must interface.

Item: An element of a set of data, such as digits, bits, or characteristics, that
is treated as a unit.

Modification: A change to software and the process for that change.
Nondevelopment Item: Software used to assist in the development of the

deliverable work products, but is not identified as a deliverable
product.

Object Code: The output from a compiler directly executable by the com-
puter system.

Peer Review: An important part of verification and a proven mechanism
for effective defect removal.

Physical Configuration Audit (PCA): Identifies the product baseline
for production and acceptance of the work product audited.
PCA verifies that the “as- built” configuration correlates with the
“as- designed” product configuration, and the acceptance test
requirements are comprehensive and meet the necessary require-
ments for acceptance of the production unit.

Preliminary Design Review: A formal meeting at which a preliminary
design is presented to the user or customer for comment and
approval.

Appendix A: Acronyms and Glossary  •  121

Procedure: The documented description of a course of action taken to per-
form activities or resolve problems; manual steps or processes to
be followed.

Process: To perform to defined instructions during the software design/
development life cycle.

Product Team (PT): The product team is accountable to management
and is composed of members from the appropriate functional dis-
ciplines (e.g., engineering, subcontractor, management, product
support, etc.) necessary to accomplish day- to- day activities.

Program: A schedule or plan that specifies actions to be taken.
Project Plan: A management approach that describes the work to be

done, resources required, methods to be used, reviews, audits,
the configuration management, quality assurance procedures to
be implemented.

Qualification Testing: Formal testing conducted by the developer for
the customer to demonstrate that the software meets specified
requirements.

Quality: The totality of features and characteristics of a product or ser-
vice that has the ability to satisfy required needs.

Quality Assurance: A planned and systematic approach to provide adequate
confidence that the product conforms to established requirements.

Quality Management System: Software industries and software pro-
grams that establish, document, implement, and maintain effec-
tive quality management and continually improve its effectiveness.

Quality Metrics: Measurement of the degrees to which software pos-
sesses given attributes that affect quality.

Rational ClearCase: Software tool; an object- oriented database utility
used to establish software product archiving, automation, iden-
tification, version/change control, software building, product
releases, status accounting, and auditing activities.

Rational ClearQuest: Database utility; used for recording, tracking and
reporting software work product reports and changes and provid-
ing internal access control mechanisms.

Requirement: A condition or capability needed by a user to solve a prob-
lem or achieve an objective. The condition of capability must be
met by a system to satisfy a contract, standard, or specification.

Requirement Analysis: The process of studying user needs and arriving
at a definition of system or software requirements. Verification is
also performed for systems and software requirements.

122  •  Appendix A: Acronyms and Glossary

Requirements Phase: The period of time in the software life cycle during
which the requirements of a software product, such as functional
and performance capabilities, are defined.

Review: Informal or formal review of system requirements, software
design, software configuration management, software quality,
test, and required data to show compliance to documented plans,
processes, and procedures.

Review Board: Established for the software product teams to review
and make a disposition of changes that affect controlled soft-
ware and related documentation.

Risk Management: Process to identify risks and identify an approach to
prevent future risks.

Software: Computer programs, procedures, rules, and any documenta-
tion pertaining to the operation of data- processing systems. It is
in contrast to hardware.

Software Configuration Management: Establishes and maintains the
work product identification process and controls changes to iden-
tified software work products and their related documentation.

 Records and reports information needed to manage software
work products effectively, including the status of proposed changes
and the implementation status of approved changes. Maintains
auditable records of all applicable software work products that help
verify conformance to specifications, interface control documents,
contract requirements, and as- built software configurations.

Software Contract: Processes and procedures supporting the software
work product defined by a purchase contract and technical areas
of software design development.

Software Design/Development Process: The process by which a user’s
needs are translated into software requirements and transformed
into design/code being tested, documented, and certified for
operational use.

Software Development Facilities: Facilities used for the preparation of
software work products prior to delivery to the software and system
integration environment or a higher level for testing capabilities.

Software Documentation: Technical data or information that describ-
ing or specifying the design or details, explaining the capabilities,
and providing instructions for using software.

Software Engineering: A systematic approach to the development, oper-
ation, and maintenance of software design/development.

Appendix A: Acronyms and Glossary  •  123

Software Engineering Institute: Resources for improving management
practices for addressing software and disciplines that affect software.

Software Life Cycle: The period of time that begins with the decision to
develop a software product and ends when the product is delivered.

Software Maintenance: Modification of a software product after delivery.
Software Product: A software entity designated for delivery to the user.
Software Quality: Features and characteristics of a software product that

satisfy needs and conform to specifications.
Software/Systems Integration Environment: The primary facility for hard-

ware, software integration, and system- level testing; could include
the production of firmware.

Software/Systems Integration Plan (SSIP): Defines or references processes
and procedures used to integrate defined work products, systems,
or subsystems into a software and systems integration environment.

Software Tools: Computer tools used to develop, test, analyze, and main-
tain a computer program and its documentation.

Source Code: Computer programs written in a computer language that
requires translation by a computer system.

Subcontractor: A company or military and aerospace contractor under
a written contract with customers to produce software, hardware,
and firmware work products required by contractual requirements.

Subcontractor Plan: Plan for subcontractors to provide required and nec-
essary support to customers per specified requirements in produc-
tion of work products.

Subcontractor Requirements List: Tracks specification control docu-
ments, subcontractor’s design, approvals, and acceptance.

Subsystem: A group of assemblies, components, or both combined to
perform a single function.

Systems Engineering: Analysis, requirement understanding, and the
importance of software design capabilities. Interfaces are defined
externally and internally to ensure hardware and software are
compatible in supporting team activities.

Testing: The process of exercising or evaluating a system by manual or auto-
mated means to verify that requirements satisfy expected results.

Test Readiness Meetings: Ensure that the software tests are complete
and carry out the intent of the software test plan and that software
to be tested is under formal control and ready for test.

Test Report: A document describing the conduct and results of testing
carried out for a system or system component.

124  •  Appendix A: Acronyms and Glossary

Unified Change Management: The approach to manage change in soft-
ware and systems developments starting from systems design to
delivery.

Validation: Demonstrates that the product, as provided, fulfills its
intended use.

Verification: Addresses whether the work product properly reflects the
specified requirements.

Version Control Document: Identifies and describes a software version
consisting of one or more computer software work products; used
to release, track, and control software versions.

Version Object Base: A repository for storing software versions of file
elements, directories, and data.

Waiver: A written authorization to accept a software configuration
item or other designated item that, during production or having
been submitted for inspection, is found to depart from specified
requirements but is nevertheless considered suitable for use as is
or after rework by an approved software method.

Work Product: A product provided by software design that consists of
requirements, code, diagrams, documentation, and development
folders.

125

Appendix B: Software/
Systems Integration Plan

Software/Systems Integration Plan (SSIP)

PLAN NUMBER: RELEASE/REVISION: RELEASE/REVISION DATE:

Assigned Plan Number NEW mm/dd/yyyy

OWNER:
Program or Project

Plan Information

Plan Type Revised New Release Date Contract Number

Formal/revision dd/mm/yyyy TBD or N/A

Signatures:

Author: Signature Program/Project mm/dd/yyyy
Name

Check by: Signature Program/Project mm/dd/yyyy
Name

Approved by: Signature Program/Project mm/dd/yyyy
Name

Released by: Signature Program/Project mm/dd/yyyy
Name

126  •  Appendix B: Software/Systems Integration Plan

ABSTRACT

Example:

The program or project software/systems integration plan (SSIP) is the doc-
ument for defining plans, processes, and procedures for software/systems
work product- level test and evaluation. The program or project consists of
computing hardware and software. The software consists of an operating
system and application. The hardware consists of computers, displays, net-
work interfaces, and interfaces to other subsystems. This SSIP describes
the test environment to be used for the testing, identifies the tests to be
performed, and provides an overview for test activities.

KEYWORDS

Development File Folder (DFF)
Development Lab (DL)
Development Plan (DP)
Quality Assurance (QA)
Systems Integration Facility (SIF)
Software Configuration Management (SCM)
Software Engineering Institute (SEI)
Software Systems Integration Plan (SSIP)

CONTENTS

1 SSIP Plan Overview ..127
2 Senior Management ... 128

2.1 Test Schedules ... 128
2.2 Software Tools ...129
2.3 Relationship to Other Plans ...129

Appendix B: Software/Systems Integration Plan  •  127

3 Test ..129
3.1 Test Products ...129

3.1.1 Software ...130
3.1.2 Systems ...130
3.1.3 Hardware ...130
3.1.4 Test Documentation ...131

4 Test Approach ..131
4.1 Informal Test ...131
4.2 Formal Test ..132

5 Responsibilities ..132
5.1 Systems Engineering ...132
5.2 Software Development ...132
5.3 Software Configuration Management133
5.4 Software Quality Organization ...133
5.5 Test Team ...133

6 Facilities Operation.. 134
6.1 Metrics ... 134
6.2 Risk Management .. 134

7 Notes .. 134
8 Acronyms .. 134
9 Figures ..135
10 Tables ..135

1   SSIP PLAN OVERVIEW

This software systems integration plan (SSIP) is a document for defining
plans, processes, and procedures for the integration of software and sys-
tems for high- level developmental testing for programs or projects.

The processes used are the following: integration definition and devel-
opment, integration procedure development reviews, integration activ-
ity execution, and integration evaluation and reporting. The SSIP also
includes overall integration planning and coordination with other test
activities, risk assessment, product evaluation, software configuration
management, and other related software support activities.

128  •  Appendix B: Software/Systems Integration Plan

This plan is a working document that will be revised as necessary
throughout the program or project software development life cycle. The
software development life- cycle plan, schedules, and the development
plan (DP) will be evaluated if required at the beginning of each of the
software builds. This working plan is not a deliverable to the customer but
will be provided along with the development file folder (DFF) required.

The SSIP is prepared using guidance from MIL- STD- xxx data item
description (DID) and the Institute of Electrical and Electronics Engineers
(IEEE) standard. The methods, standards, and procedures described
here were derived from the level 3 processes of the Software Engineering
Institute (SEI) Capability Maturity Model Integration (CMMI®). The SSIP
identifies the required organizations, resources, and schedules for integra-
tion activities.

2   SENIOR MANAGEMENT

The program or project senior management function is to perform guid-
ance, support, monitor, and report progress regarding software and sys-
tems integration to teams and define the role and task for software- and
systems- related activities as shown in Table B.1.

2.1   Test Schedules

Software development will follow the program or project master schedules.
The master schedule defines the dates that serve as the milestones for soft-
ware and systems integration activities.

TABLE B.1

Roles and Responsibilities

Group Roles Task

Test team Trained testers Software/system test
activities

Software team Software design Software- related activities
Work product teams Reviewers Participate in reviews of

software design and test

Appendix B: Software/Systems Integration Plan  •  129

2.2   Software Tools

The software and systems integration environment encompasses equip-
ment, location, and tools used to develop and test facility environments.
Software tools are used to maintain the integrity and structure of the
existing software development and applicable documentation.

Note: Such tools are, for instance, ClearCase and ClearQuest.

2.3   Relationship to Other Plans

The relationship to other plans increases the objectivity for the program or
project to ensure better oversight with the capabilities to reference plans
that support the software and systems integration activities.

Note: List plans.

Development plans
Configuration management plans
Quality plans

3   TEST

The conduct and completion of the test provide verification to ensure
that programs or projects meet the requirements of the software and
system design.

3.1   Test Products

Inputs for test products to support software and system integration include:

• Software requirements
• Approved changes
• Acquired engineering products
• Software resources

130  •  Appendix B: Software/Systems Integration Plan

• Controlled software
• Authorization for updates to test products

Plans, procedures, and data include:

• The SSIP
• Software/system integration test procedures
• High- level test plans
• Problem reports
• Software/system integration measurement data

3.1.1   Software

Defined and documented software plans and procedures include:

• Development plan (DP)
• Software user manuals (SUMs)
• Software configuration management plan (SCMP)
• Software build and installation procedures
• Software quality plan (SQP)
• Integration facilities operational plans and procedures

3.1.2   Systems

Defined and documented system design plans and procedures include:

• Systems engineering plan (SEP)
• Systems design procedures
• Systems test reports
• Hardware drawings
• Integration facility configurations
• Hardware serial number verification procedures or instructions

3.1.3   Hardware

Defined hardware includes:

• Workstations
• Display units
• Printers

Appendix B: Software/Systems Integration Plan  •  131

• Disk sets
• Drivers and interface cards
• Networks or servers

3.1.4   Test Documentation

Defined test documentation includes:

• Test plan (TP)
• High- level test plans
• Test report (TR)
• Installation procedures

4   TEST APPROACH

The test approach for programs or projects is an integrated plan and activ-
ity to begin preparation of informal and formal test plans and procedures
based on the specifications listed in Table B.2.

4.1   Informal Test

To establish controls and reporting processes for informal use, the pro-
gram or project approach is based on informal and draft documents.
Results of informal engineering testing of the internal documents and

TABLE B.2

Test Approach

Test Team Focus Test Approach

Prepares for incremental software and
systems integration of functional test
methods

Incremental test methods provide visibility
into the evolving work product and reduce
common problems of delayed visibility late in
software and system integration and testing.

Mature test processes and tools Software test tools are available tools that
automate and integrate the software
development and integration.

Upgrades the path to meet future issues
and utilize advanced technologies

Maximum utilization of commercial software
and hardware.

132  •  Appendix B: Software/Systems Integration Plan

artifacts (e.g., version control documents [VCDs], test plans, test proce-
dures, data, metrics, etc.) are not released to customers and are main-
tained internally for checkout, troubleshooting, and recommendations to
start the formal test.

4.2   Formal Test

The program or project formal test is conducted to official and formal
released procedures, plans, and instructions. The formal test states per
high- level authorization and documentation the objective and suc-
cess criteria. The formal test requirement describes the configuration of
the software or system item under test and lists the test equipment and
required support. Formal engineering testing of the internal documents
and artifacts (e.g., VCDs, test plans, test procedures, data, metrics, etc.) are
released to customers and maintained internally.

5   RESPONSIBILITIES

The responsibilities of systems and software engineering, software con-
figuration management (SCM), software quality organization, and the test
team require program or project support during the software and systems
integration activities stated in Figure B.1.

5.1   Systems Engineering

Technical requirements are provided by systems engineering personnel
to allocate technical requirements for programs or projects that consist of
both software and hardware.

FIGURE B.1
Software team responsibilities.

Appendix B: Software/Systems Integration Plan  •  133

5.2   Software Development

Software design personnel provide software development support during
software and systems integration testing in a development lab (DL) and
integration facilities. They are responsible for troubleshooting, resolv-
ing software problems, and supporting isolation of system problems that
occur while testing hardware and software.

5.3   Software Configuration Management

The software configuration management (SCM) team is responsible for
building and providing configuration control of software for test orga-
nizations to use in the DL and integration facility. For software and inte-
gration testing, the SCM team is responsible for the configuration of the
software in conjunction with other software build teams. The software
builds and installation in the required facilities are performed by SCM
following version control document (VCD) installation instructions or
installation procedures.

5.4   Software Quality Organization

The software quality (SQ) organization will support system and software
tests conducted as defined in the software quality plan (SQP). The hard-
ware quality assurance (QA) personnel are not required to support the test
but monitor execution for software during integration activities.

5.5   Test Team

The program or project Test Team is responsible for the conduct and com-
pletion of informal and formal test activities per Figure B.2 to ensure a
level of functional maturity. The test team has the overall responsibility
to plan, schedule, and conduct test activities in the integration facilities.

FIGURE B.2
Informal and formal tests.

134  •  Appendix B: Software/Systems Integration Plan

6   FACILITIES OPERATION

The program or project facility operation environment provides integra-
tion for hardware and software and systems integration to support soft-
ware design and equipment integration. The facility operation will be used
to integrate and test the work products and build up and support incre-
mental deliveries of software builds.

6.1   Metrics

Metrics are used on the program or project to manage facility operations
activities. These metrics are used to evaluate the maturity of the software,
measure progress of development, test efforts, and identify software risks
during integration in an integration environment.

6.2   Risk Management

Risk management describes the process used by program or projects to
identify and monitor facility operation risks inside software and system
integration activities.

7   NOTES

Industry standards such as MIL- STD- xxx are used as a baseline for
programs and projects and developing methodology for integration and
testing. The IEEE- xxx standard was used as guidance for identifying inte-
gration and test methods.

8   ACRONYMS

DP: development plan
SSIP: software/systems integration plan
VCD: version control document
(Continue listing acronyms, i.e., DFF, development file folder).

Appendix B: Software/Systems Integration Plan  •  135

9   FIGURES

Figure B.1. Software life- cycle responsibilities.
Figure B.2. Informal and formal test.

10   TABLES

Table B.1. Roles and Responsibilities
Table B.2. Test Approach

137

Appendix C: Software
Audit Checklist

Software Audit Checklist

Subcontractor Company Name

VCD Part Number and Rev Level: ___ Customer Representative: Name
Deliverable: Definition and Functions Start Date: mm/dd/yyyy
Participants: List Names Completion Date: mm/dd/yyyy

Subcontractor Manager: Name Customer Manager: Name

Sub = Subcontractor, Cust = Customer, Yes = Y, No = N

Verifications
Sub
Y/N

Cust
Y/N Condition Noted

Readiness review:
• Plans/procedures released
• Software environments available
• Personnel prepared and available
• Software configured for test

Start Date: mm/dd/yyyy

Development and testing conducted Ensure this development
and testing phase is
completed to support the
software audit.

Objectives:
• Functional requirements satisfied
• Problems with hardware or

software identified and recorded

N = Action Item (AI#1)
Y = Pass

Software configuration management:
• VCD released
• Software configuration

management plan revision
• Plans and procedures released
• Software media controlled
• Required software installed for

verification and validation

Notes:

Continued

138  •  Appendix C: Software Audit Checklist

Verifications
Sub
Y/N

Cust
Y/N Condition Noted

Configuration status accounting
report:
• Operation procedures released
• High- level changes approved
• Plans in database management
• Procedures in database

management
• Documents and drawings released
• Quality buy- offs

N AI#1

Test conduct:
• Test procedures performed in

accordance with company policies
• Paperwork authorized for test
• Test failures recorded
• Configuration issues recorded
• As-run procedures performed
• Test reports released/revision
• Test complete

Notes:

Data package: Software deliverables
prepared for retention in a controlled
computer media library (CML) and
archived both on-site and off-site

Notes:

Test Conduct
Sub
Y/N

Cust
Y/N Condition Noted

Test procedures: Notes:
• Test data procedure revision
• Operating procedures revision
• Software user manual revision
• Software development plan

revision
• Software user manual revision
• Test report revision

Product Release and Acceptance
Sub
Y/N

Cust
Y/N Condition Noted

Any regression testing of any audited
test steps recorded.

N AI#2

Test procedures released and under
change control.

Notes:

Appendix C: Software Audit Checklist  •  139

Product Release and Acceptance
Sub
Y/N

Cust
Y/N Condition Noted

Test reports released and under change
control.

N AI#3

Top- level assembly or outline drawings
have been reviewed and approved by
customer.

N AI#1

Test environment was defined and
controlled.

Notes:

Open and closed:
• Problem reports
• Corrective actions
• Issues
• Findings

Notes:

Software Audit Completion

Software Audit Completion
Sub
Y/N

Cust
Y/N Condition Noted

Is there evidence of software
acceptance?

Notes:

Are completion dates for any open
action items defined?

Notes:

Software Audit Action Items

Description ECD Complete
AI#1: Document mm/dd/yyyy
AI#2: Document mm/dd/yyyy
AI#3: Document mm/dd/yyyy

Customers Action Items

Description ECD Complete
AI#1: Document mm/dd/yyyy

140  •  Appendix C: Software Audit Checklist

Team Participation:

• Program or project managers
• Systems engineering
• Software design
• Software test
• Configuratiron management
• Quality assurance

Software Audit was conducted and performed at: Facility Name

Date Completed: mm/dd/yyyy

The current Software Audit status:

 ⃞ Closed as acceptable with no action items.
 ⃞ Closed as acceptable with action items.
 ⃞ Open pending completion of defined action items.

Name mm/dd/yyyy
Customer Representative Date

141

Appendix D: Software
Checklist PCA

OUTLINE

< EXAMPLE >

Software PCA Checklist

Program or Project
Integration Facility Location

Work Product Identification(s)
Systems and Hardware Configuration(s)

• Define

Plans:

Document (1) Document Number/Rev Yes No
Quality plan (QP) Nnnn- nnnnn- n A X
Systems engineering plan (SEP) Nnnn- nnnnn- n B X
Software configuration management plan (SCMP) Nnnn- nnnnn- n C X
Software quality plan (SQP) Nnnn- nnnnn- n D X
Development plan (DP) Nnnn- nnnnn- n E X
Configuration management plan (CMP) Nnnn- nnnnn- n F
Configuration audit plan (CAP) Nnnn- nnnnn- n G X
Software subcontractor plan (SSP) Nnnn- nnnnn- n H X
Software systems integration plan (SSIP) Nnnn- nnnnn- n J
Test plan (TP) Nnnn- nnnnn- n K X
Computer media library (CML) plan Nnnn- nnnnn- n L X

142  •  Appendix D: Software Checklist PCA

1.  Additional Plans: Design Engineer/Test Engineer Generated

Procedures:

Procedure (2) Document Number/Rev Yes No
Software instructions Nnnn- nnnnn- n A X
Facility setup procedures Nnnn- nnnnn- n B X
Build procedures Nnnn- nnnnn- n C X
Version control document (VCD) Nnnn- nnnnn- n D X
Integration test procedures Nnnn- nnnnn- n E X
Integration test reports Nnnn- nnnnn- n F X
Software loading instructions Nnnn- nnnnn- n H X
Software logs (informal integration) Nnnn- nnnnn- n J X
Work product authorizing procedures Nnnn- nnnnn- n K X

2.  Additional Corrective Actions: Quality Generated

Records:

Problem Reports (1) Description Open Closed
N- nnnn-01 Test failures X
N- nnnn-02 Integration errors X
N- nnnn-03 Troubleshoot integration problems X
N- nnnn-04 Software design problems X
N- nnnn-05 Steps missing in procedures X
N- nnnn-06 Coding errors X
N- nnnn-07 System installations incorrect X
N- nnnn-08 Software build errors X
Corrective Actions (2) Description Open Closed
CAnnnn-01 Process not compliant during code

development
X

CAnnnn-02 Monitor formal test activities X
CAnnnn-03 Project processes not followed X
CAnnnn-04 Implementation process concerns X
CAnnnn-05 Plans not followed during test X
CAnnnn-06 Plans and procedures not released X

Appendix D: Software Checklist PCA  •  143

3.  Additional Problem Reports: Design Engineer/Test Engineer Generated

4.  Additional Corrective Actions: Quality Generated

Computer Media Library Comments
Commercial off the shelf (COTS) Part number, version, title
Nondevelopment item (NDI Part number, version, title
Company developed software Part number, version, title
Computer media library (CML) plan Part number, version, title
Vendor installation procedures Documentation

Computer Media Library (Procedure): Incoming and Outgoing Media (Audit)

Attachment: Computer Media Library (CML) Log sheet

See below

ID Source P/N Ver Qty Title Media Date Vendor Location
1 COTS nnnnn v001 2 PC apps CD mm/dd/yy Name CML1
2 COTS nnnnn v003 1 Unix apps DVD mm/dd/yy Name CML2
3 NDI nnnnn v005 4 MS Word CD mm/dd/yy Name CML3
4 Company nnnnn v007 2 Product CD mm/dd/yy Name CML4
5 COTS nnnnn v009 2 PC apps DVD mm/dd/yy Name CML5
6 NDI N/A N/A 1 Instruction Doc mm/dd/yy Name CML6

PCA Checklist:

Activities Comments
• PCA entry criteria accomplished:

 ✓ Readiness review successfully held
 ✓ Defined responsibilities and authority
 ✓ Agreed- to agenda
 ✓ Presentation including scope and in- brief
materials
 ✓ Presentation material clear and sufficient in
detail and consistent within scope

Date Started: mm/dd/yyyy

• Product configuration baseline identified.
 Were the operating and software support

documents reviewed (VCD, TPs, TRs, etc.)?
 Installation software identified in VCDs with

reference to media and systems
Continued

144  •  Appendix D: Software Checklist PCA

Activities Comments
• Specification review and validation to define the

configuration item, testing, mobility/
transportability, and packaging requirements:

 ✓ Packaging plan/requirements review complete
 ✓ Test procedures and results complete

• Documents review against as- built and variations,
including outstanding design changes, part
numbers, and description:

 ✓ Changes incorporated between test baseline and
release baseline?
 ✓ Installation and inspections complete and
closed

• Review of unincorporated design changes.
 ✓ Outstanding changes, problem reports

• Review waivers and deviations to specifications
and standards:

 ✓ Action item database open items impacting
software

• Document release system for control of processing
and formal release of engineering changes:

 ✓ Test tools identified?
 ✓ Software tools identified
 ✓ Software part number
 ✓ Review of build processes
 ✓ Software media labeling requirements
 ✓ Software media storage requirement

• Was the software end item reviewed?
 ✓ Software design descriptions
 ✓ Software requirements

 ✓ Status of reviews (informal/formal)
 ✓ Findings/status of quality evaluations/reviews/
audits
 ✓ Subcontractors developed software
 ✓ Embedded COTS/NDI/company developed

• Exit criteria:
 ✓ Roster
 ✓ Agenda and presentation data
 ✓ Action item log and action items
 ✓ Data package
 ✓ Signed certification sheets
 ✓ Test data is complete and accurate

Date Completed: mm/dd/yyyy

Appendix D: Software Checklist PCA  •  145

Certifications:

Data/Media Status
PCA cover sheet Open
Certification package scope/purpose Closed
Product configuration baseline established Closed
Specification reviews and validation Open
Software drawing/document review Closed
Unincorporated software changes Closed
Software deviations/waivers Open
Computer media library (CML) Closed

OPEN

CLOSED

Status

Action Items:

AI Number Description ECD
AI-001 Problem reports open mm/dd/yyyy
AI-002 Corrective actions open mm/dd/yyyy
AI-003 Build procedures not released mm/dd/yyyy
AI-004 SCMP not available mm/dd/yyyy
AI-005 Locate software test logs mm/dd/yyyy
AI-006 Testing not complete before PCA mm/dd/yyyy

Final Comments:

X = Yes or No.

Yes

No

�e as-built configuration is established by released documentation to establish the
product baseline.

Company Representative(s) mm/dd/yyyy

Effective M
etho

d
s fo

r So
ftw

a
re a

nd
 System

s Integ
ra

tio
n

Boyd L. Summers

Effective
Methods for
Software and
Systems
Integration

Sum
m

ers

Information Technology / Software Engineering & Systems Development

Before software engineering builds and installations can be implemented into
software and/or systems integrations in military and aerospace programs, a
comprehensive understanding of the software development life cycle is required.
Covering all the development life cycle disciplines, Effective Methods for
Software and Systems Integration explains how to select and apply a life
cycle that promotes effective and efficient software and systems integration.

The book defines time-tested methods for systems engineering, software
design, software engineering informal/formal builds, software engineering
installations, software and systems integration, delivery activities, and product
evaluations. Explaining how to deal with scheduling issues, the text considers
the use of IBM Rational ClearCase and ClearQuest tools for software and
systems integration. It also:

•	 Presents methods for planning, coordination, software loading,
and testing

•	 Addresses scheduling issues and explains how to plan to coordinate
with customers

•	 Covers all development life cycle disciplines

•	 Explains how to select and apply a life cycle that promotes effective
and efficient software and systems integration

The text includes helpful forms—such as an audit checklist, a software/
systems integration plan, and a software checklist PCA. Providing you with
the understanding to achieve continuous improvements in quality throughout
the software life cycle, it will help you deliver projects that are on time and
within budget constraints in developmental military and aerospace programs
as well as the software industry.

ISBN: 978-1-4398-7662-6

9 781439 876626

90000

K13560

www.auerbach-publications.com

www.crcpress.com

K13560 cvr mech.indd 1 5/14/12 12:59 PM

	Front Cover
	Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgments
	About the Author
	Chapter 1 - Introduction
	Chapter 2 - Program and Project Planning
	Chapter 3 - Systems Design
	Chapter 4 - Software Requirements
	Chapter 5 - Software Design
	Chapter 6 - Software Implementation
	Chapter 7 - Software Integration
	Chapter 8 - Software and Systems Integration
	Chapter 9 - Software Subcontractor
	Chapter 10 - Software and System Delivery
	Chapter 11 - Product Evaluation
	Appendix A: Acronyms and Glossary
	Appendix B: Software/Systems Integration Plan
	Appendix C: Software Audit Checklist
	Appendix D: Software Checklist PCA
	Back Cover

